Skip to main content

Integrating Multi-scale Gene Features for Cancer Diagnosis

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10996))

Included in the following conference series:

  • 3084 Accesses

Abstract

Cancer is one of the major diseases that threaten human life. The advancement of high-throughput sequencing technology provides a way to accurately diagnose cancer and reveal the pathogenesis of cancer at the molecular level. In this study, we integrated the differentially expressed genes, and differential DNA methylation patterns, and applied multiple machine learning methods to conduct cancer diagnosis. The experimental results show that the performance of cancer diagnosis can be significantly improved with the integrated multi-scale gene features of RNA and epigenetic level. The AUC of classifier can be increased by 7.4% with multi-scale gene features compared to only differentially expressed genes, which verifies the effectiveness of the integration of multi-scale gene features for cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuster, S.C.: Next-generation sequencing transforms today’s biology. J. Nat. Methods 5(1), 16–18 (2008)

    Article  Google Scholar 

  2. Zhou, X.G., Ren, L.F., Li, Y.T., et al.: The next-generation sequencing technology: a technology review and future perspective. J. Sci China Life Sci. 53(1), 44–57 (2010)

    Article  Google Scholar 

  3. Maglogiannis, I., Zafiropoulos, E., Anagnostopoulos, I.: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers. J. Appl. Intell. 30(1), 24–36 (2009)

    Article  Google Scholar 

  4. Chen, A.H., Huang, Z.-W.: A new multi-task learning technique to predict classification of leukemia and prostate cancer. In: Zhang, D., Sonka, M. (eds.) ICMB 2010. LNCS, vol. 6165, pp. 11–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13923-9_2

    Chapter  Google Scholar 

  5. Hijazi, H., Chan, C.: A classification framework applied to cancer gene expression profiles. J. Healthcare Eng. 4(4), 255–284 (2013)

    Article  Google Scholar 

  6. Nakkeeran, R., Victoire, T.A.A.: Hybrid approach of data mining techniques, PCA, EDM and SVM for cancer gene feature selection and classification. J. Eur. J. Sci. Res. 79, 638–652 (2012)

    Google Scholar 

  7. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)

    Article  Google Scholar 

  8. Kuan, P.F., Wang, S., Zhou, X., Chu, H.: A statistical framework for Illumina DNA methylation arrays. J. Bioinform. 26, 2849–2855 (2010)

    Article  Google Scholar 

  9. Baylin, S.B., Ohm, J.E.: Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction. J. Nat. Rev. Cancer 6, 107–116 (2006)

    Article  Google Scholar 

  10. Kulis, M., Esteller, M.: DNA methylation and cancer. J. Adv. Gene. 70, 27–56 (2010)

    Google Scholar 

  11. Wang, S.: Method to detect differentially methylated loci with case-control designs using Illumina arrays. J. Genet. Epidemiol. 35, 686–694 (2011)

    Article  Google Scholar 

  12. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. J. Bioinform. 26, 139–140 (2010)

    Article  Google Scholar 

  13. Wang, D., Yan, L., Hu, Q., et al.: IMA: an R package for high-throughput analysis of Illumina’s 450K Infinium methylation data. J. Bioinform. 28(5), 729–730 (2012)

    Article  Google Scholar 

  14. Ahn, S., Wang, T.: A powerful statistical method for identifying differentially methylated markers in complex diseases. J. Pac. Symp. Biocomput. 69–79 (2013). NIH Public Access

    Google Scholar 

  15. Huang, H., Chen, Z., Huang, X.: Age-adjusted nonparametric detection of differential DNA methylation with case-control designs. J. BMC Bioinform. 14, 86–94 (2013)

    Article  Google Scholar 

  16. Zhang, Y., Zhang, J., Shang, J.: Quantitative identification of differentially methylated loci based on relative entropy for matched case-control data. J. Epigenomics 5, 631–643 (2013)

    Article  Google Scholar 

  17. Jaffe, A.E., Murakami, P., Lee, H., et al.: Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. J. Int. J. Epidemiol. 41(1), 200–209 (2012)

    Article  Google Scholar 

  18. Sofer, T., Schifano, E.D., Hoppin, J.A., et al.: A-clustering: a novel method for the detection of co-regulated methylation regions, and regions associated with exposure. J. Bioinform. 29(22), 2884–2891 (2013)

    Article  Google Scholar 

  19. Ong, M.L., Holbrook, J.D.: Novel region discovery method for Infinium 450K DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. J. Aging Cell. 13(1), 142–155 (2014)

    Article  Google Scholar 

  20. Wang, Y., Teschendorff, A.E., Widschwendter, M., Wang, S.: Accounting for differential variability in detecting differentially methylated regions. J. Brief. Bioinform. (2017). bbx097

    Google Scholar 

  21. Du, P., Zhang, X., et al.: Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. J. BMC Bioinform. 11, 587–596 (2010)

    Article  Google Scholar 

  22. The Cancer Genome Atlas Research Network., Weinstein, J.N., et al.: The cancer genome atlas Pan-Cancer analysis project. J. Nat. Genet. 45(10), 1113–1120 (2013)

    Google Scholar 

  23. Ge, S., Xia, X., Ding, C., et al.: A proteomic landscape of diffuse-type gastric cancer. J. Nat. Commun. 9(1), 1012–1028 (2018)

    Article  Google Scholar 

  24. Mertins, P., Mani, D.R., Ruggles, K.V., et al.: Proteogenomics connects somatic mutations to signalling in breast cancer. J. Nature 534, 55–62 (2016)

    Article  Google Scholar 

  25. Zhang, H., Liu, T., Zhang, Z., et al.: Integrated proteogenomic characterization of human high-grade serous ovarian cancer. J. Cell. 166(3), 755–765 (2016)

    Article  Google Scholar 

  26. Zhang, B., Wang, J., Wang, X., et al.: Proteogenomic characterization of human colon and rectal cancer. J. Nature 513, 382–403 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (NO. 48, 2014-1685) and the Key Natural Science Project of Anhui Provincial Education Department (KJ2017A016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haifeng Zhao or Meng Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hang, P., Shi, M., Long, Q., Li, H., Zhao, H., Ma, M. (2018). Integrating Multi-scale Gene Features for Cancer Diagnosis. In: Zhou, J., et al. Biometric Recognition. CCBR 2018. Lecture Notes in Computer Science(), vol 10996. Springer, Cham. https://doi.org/10.1007/978-3-319-97909-0_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97909-0_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97908-3

  • Online ISBN: 978-3-319-97909-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics