Skip to main content

Physiological Roles of Leukocytes and Disorders

  • Chapter
  • First Online:
  • 2826 Accesses

Abstract

This chapter describes white blood cells of the peripheral blood: neutrophils, eosinophils, basophils, monocytes, and lymphocyte subsets. It describes their basic physiology and important disease states associated with defects of each of these entities. Each of these cells arises from a common bone marrow myeloid or lymphoid progenitor to differentiate into their unique types.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brinkmann V, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

    Article  CAS  PubMed  Google Scholar 

  2. Papayannopoulos V, et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eash KJ, et al. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest. 2010;120(7):2423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martin C, et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19(4):583–93.

    Article  CAS  PubMed  Google Scholar 

  5. Kohler A, et al. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood. 2011;117(16):4349–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Williams MR, et al. Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol. 2011;32(10):461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med. 2011;17(11):1381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ley K, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    Article  CAS  PubMed  Google Scholar 

  9. Jones DH, et al. Quantitation of intracellular Mac-1 (CD11b/CD18) pools in human neutrophils. J Leukoc Biol. 1988;44(6):535–44.

    Article  CAS  PubMed  Google Scholar 

  10. Marchesi VT, Florey HW. Electron micrographic observations on the emigration of leucocytes. Q J Exp Physiol Cogn Med Sci. 1960;45:343–8.

    CAS  PubMed  Google Scholar 

  11. Proebstl D, et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med. 2012;209(6):1219–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stark K, et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol. 2013;14(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  13. Kawasaki H, Iwamuro S. Potential roles of histones in host defense as antimicrobial agents. Infect Disord Drug Targets. 2008;8(3):195–205.

    Article  CAS  PubMed  Google Scholar 

  14. Li P, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184(2):205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122(16):2784–94.

    Article  CAS  PubMed  Google Scholar 

  17. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–87.

    Article  CAS  PubMed  Google Scholar 

  18. Delgado-Rizo V, et al. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Clark SR, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  20. Pilsczek FH, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185(12):7413–25.

    Article  CAS  PubMed  Google Scholar 

  21. Yousefi S, et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16(11):1438–44.

    Article  CAS  PubMed  Google Scholar 

  22. Pillay J, et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010;116(4):625–7.

    Article  CAS  PubMed  Google Scholar 

  23. Shi J, et al. Role of the liver in regulating numbers of circulating neutrophils. Blood. 2001;98(4):1226–30.

    Article  CAS  PubMed  Google Scholar 

  24. Furze RC, Rankin SM. The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse. FASEB J. 2008;22(9):3111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horwitz M, et al. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet. 1999;23(4):433–6.

    Article  CAS  PubMed  Google Scholar 

  26. Bellanne-Chantelot C, et al. Mutations in the ELA2 gene correlate with more severe expression of neutropenia: a study of 81 patients from the French Neutropenia Register. Blood. 2004;103(11):4119–25.

    Article  CAS  PubMed  Google Scholar 

  27. Wetzler M, et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med. 1990;89(5):663–72.

    Article  CAS  PubMed  Google Scholar 

  28. Djaldetti M, Joshua H, Kalderon M. Familial leukopenia-neutropenia in Yemenite Jews. Observations on eleven families. Bull Res Counc Isr Sect E Exp Med. 1961;9E:24–8.

    CAS  PubMed  Google Scholar 

  29. Shaper AG, Lewis P. Genetic neutropenia in people of African origin. Lancet. 1971;2(7732):1021–3.

    Article  CAS  PubMed  Google Scholar 

  30. Reich D, et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 2009;5(1):e1000360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tesfa D, Keisu M, Palmblad J. Idiosyncratic drug-induced agranulocytosis: possible mechanisms and management. Am J Hematol. 2009;84(7):428–34.

    Article  CAS  PubMed  Google Scholar 

  32. Meliconi R, et al. The role of interleukin-8 and other cytokines in the pathogenesis of Felty’s syndrome. Clin Exp Rheumatol. 1995;13(3):285–91.

    CAS  PubMed  Google Scholar 

  33. Liu JH, et al. Chronic neutropenia mediated by fas ligand. Blood. 2000;95(10):3219–22.

    Article  CAS  PubMed  Google Scholar 

  34. Tabor B, et al. Dialysis neutropenia: the role of the cytoskeleton. Kidney Int. 1998;53(3):783–9.

    Article  CAS  PubMed  Google Scholar 

  35. Schwartz J, Weiss ST. Cigarette smoking and peripheral blood leukocyte differentials. Ann Epidemiol. 1994;4(3):236–42.

    Article  CAS  PubMed  Google Scholar 

  36. Parry H, et al. Smoking, alcohol consumption, and leukocyte counts. Am J Clin Pathol. 1997;107(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  37. Seebach JD, et al. The diagnostic value of the neutrophil left shift in predicting inflammatory and infectious disease. Am J Clin Pathol. 1997;107(5):582–91.

    Article  CAS  PubMed  Google Scholar 

  38. Cain DW, et al. Inflammation triggers emergency granulopoiesis through a density-dependent feedback mechanism. PLoS One. 2011;6(5):e19957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCarthy DA, et al. Leukocytosis induced by exercise. Br Med J (Clin Res Ed). 1987;295(6599):636.

    Article  CAS  Google Scholar 

  40. Barbosa MD, et al. Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature. 1996;382(6588):262–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Durchfort N, et al. The enlarged lysosomes in beige j cells result from decreased lysosome fission and not increased lysosome fusion. Traffic. 2012;13(1):108–19.

    Article  CAS  PubMed  Google Scholar 

  42. Marlin SD, et al. LFA-1 immunodeficiency disease. Definition of the genetic defect and chromosomal mapping of alpha and beta subunits of the lymphocyte function-associated antigen 1 (LFA-1) by complementation in hybrid cells. J Exp Med. 1986;164(3):855–67.

    Article  CAS  PubMed  Google Scholar 

  43. Winkelstein JA, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 2000;79(3):155–69.

    Article  CAS  Google Scholar 

  44. van den Berg JM, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4(4):e5234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Petersen LC, Bjorn SE, Nordfang O. Effect of leukocyte proteinases on tissue factor pathway inhibitor. Thromb Haemost. 1992;67(5):537–41.

    Article  CAS  PubMed  Google Scholar 

  46. Noubouossie DF, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. von Bruhl ML, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.

    Article  CAS  Google Scholar 

  48. Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2012;32(8):1777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mantovani A, et al. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519–31.

    Article  CAS  PubMed  Google Scholar 

  50. Scapini P, Bazzoni F, Cassatella MA. Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol Lett. 2008;116(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  51. Keshari RS, et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One. 2012;7(10):e48111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Villanueva E, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187(1):538–52.

    Article  CAS  PubMed  Google Scholar 

  53. Soderberg D, et al. Increased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to anti-neutrophil cytoplasmic antibodies during remission. Rheumatology (Oxford). 2015;54(11):2085–94.

    Article  CAS  Google Scholar 

  54. Wong SL, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schauer C, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–7.

    Article  CAS  PubMed  Google Scholar 

  56. Antonio N, et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J. 2015;34(17):2219–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Houghton AM, et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med. 2010;16(2):219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Deryugina EI, et al. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia. 2014;16(10):771–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Blaisdell A, et al. Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells. Cancer Cell. 2015;28(6):785–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang DE, et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci U S A. 1997;94(2):569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ackerman SJ. To be, or not to be, an eosinophil: that is the ??? Blood. 2013;122(5):621–3.

    Article  CAS  PubMed  Google Scholar 

  62. Du J, et al. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem. 2002;277(45):43481–94.

    Article  CAS  PubMed  Google Scholar 

  63. Hirasawa R, et al. Essential and instructive roles of GATA factors in eosinophil development. J Exp Med. 2002;195(11):1379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paul CC, et al. Cooperative effects of interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor: a new myeloid cell line inducible to eosinophils. Blood. 1993;81(5):1193–9.

    Article  CAS  PubMed  Google Scholar 

  65. Collins PD, et al. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med. 1995;182(4):1169–74.

    Article  CAS  PubMed  Google Scholar 

  66. Steinbach KH, et al. Estimation of kinetic parameters of neutrophilic, eosinophilic, and basophilic granulocytes in human blood. Blut. 1979;39(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  67. Liao W, et al. The eosinophil in health and disease: from bench to bedside and back. Clin Rev Allergy Immunol. 2016;50(2):125–39.

    Article  CAS  PubMed  Google Scholar 

  68. Gleich GJ, Adolphson CR. The eosinophilic leukocyte: structure and function. Adv Immunol. 1986;39:177–253.

    Article  CAS  PubMed  Google Scholar 

  69. Ueki S, et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121(11):2074–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Farhan RK, et al. Effective antigen presentation to helper T cells by human eosinophils. Immunology. 2016;149(4):413–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duez C, et al. Migration and accumulation of eosinophils toward regional lymph nodes after airway allergen challenge. J Allergy Clin Immunol. 2004;114(4):820–5.

    Article  CAS  PubMed  Google Scholar 

  72. MacKenzie JR, et al. Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function. J Immunol. 2001;167(6):3146–55.

    Article  CAS  PubMed  Google Scholar 

  73. Robertson SA, et al. Uterine eosinophils and reproductive performance in interleukin 5-deficient mice. J Reprod Fertil. 2000;120(2):423–32.

    Article  CAS  PubMed  Google Scholar 

  74. Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  75. Gotlib J. World Health Organization-defined eosinophilic disorders: 2014 update on diagnosis, risk stratification, and management. Am J Hematol. 2014;89(3):325–37.

    Article  CAS  PubMed  Google Scholar 

  76. Simon HU, et al. Refining the definition of hypereosinophilic syndrome. J Allergy Clin Immunol. 2010;126(1):45–9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cogan E, Roufosse F. Clinical management of the hypereosinophilic syndromes. Expert Rev Hematol. 2012;5(3):275–89; quiz 290.

    Article  CAS  PubMed  Google Scholar 

  78. Bochner BS, Gleich GJ. What targeting eosinophils has taught us about their role in diseases. J Allergy Clin Immunol. 2010;126(1):16–25; quiz 26–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vivier E, et al. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.

    Article  CAS  PubMed  Google Scholar 

  80. Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest. 2014;124(5):1872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Miller JS, Alley KA, McGlave P. Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stroma-based long-term culture system: identification of a CD34+7+ NK progenitor. Blood. 1994;83(9):2594–601.

    Article  CAS  PubMed  Google Scholar 

  82. Spits H, Lanier LL, Phillips JH. Development of human T and natural killer cells. Blood. 1995;85(10):2654–70.

    Article  CAS  PubMed  Google Scholar 

  83. Poli A, et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009;126(4):458–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lieberman J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol. 2003;3(5):361–70.

    Article  CAS  PubMed  Google Scholar 

  85. Biron CA, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol. 1999;17:189–220.

    Article  CAS  PubMed  Google Scholar 

  86. Martin-Fontecha A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol. 2004;5(12):1260–5.

    Article  CAS  PubMed  Google Scholar 

  87. Zamai L, et al. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med. 1998;188(12):2375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Long EO. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol. 1999;17:875–904.

    Article  CAS  PubMed  Google Scholar 

  89. Borrego F, et al. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol. 2002;38(9):637–60.

    Article  CAS  PubMed  Google Scholar 

  90. Weis WI, Taylor ME, Drickamer K. The C-type lectin superfamily in the immune system. Immunol Rev. 1998;163:19–34.

    Article  CAS  PubMed  Google Scholar 

  91. Moretta A, et al. Natural killer lymphocytes: “null cells” no more. Ital J Anat Embryol. 2001;106(4):335–42.

    CAS  PubMed  Google Scholar 

  92. Ruggeri L, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110(1):433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. De Oliveira LG, et al. Role of interleukin 8 in uterine natural killer cell regulation of extravillous trophoblast cell invasion. Placenta. 2010;31(7):595–601.

    Article  PubMed  CAS  Google Scholar 

  94. Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320(26):1731–5.

    Article  CAS  PubMed  Google Scholar 

  95. Mace EM, et al. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset. Blood. 2013;121(14):2669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gineau L, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest. 2012;122(3):821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lima M, et al. Clinicobiological, immunophenotypic, and molecular characteristics of monoclonal CD56−/+dim chronic natural killer cell large granular lymphocytosis. Am J Pathol. 2004;165(4):1117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tse E, Liang RH. Natural killer cell neoplasms. Clin Lymphoma. 2004;5(3):197–201.

    Article  PubMed  Google Scholar 

  99. Tefferi A, et al. Chronic natural killer cell lymphocytosis: a descriptive clinical study. Blood. 1994;84(8):2721–5.

    Article  CAS  PubMed  Google Scholar 

  100. Hoganson DD, Weenig RH, Warrington KJ. A 61-year-old man with livedo reticularis. Arthritis Rheum. 2008;59(11):1682–4.

    Article  PubMed  Google Scholar 

  101. Imai K, et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000;356(9244):1795–9.

    Article  CAS  PubMed  Google Scholar 

  102. Sullivan KE, et al. Defective natural killer cell function in patients with hemophagocytic lymphohistiocytosis and in first degree relatives. Pediatr Res. 1998;44(4):465–8.

    Article  CAS  PubMed  Google Scholar 

  103. Fogel LA, Yokoyama WM, French AR. Natural killer cells in human autoimmune disorders. Arthritis Res Ther. 2013;15(4):216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nagasawa T. CXCL12/SDF-1 and CXCR4. Front Immunol. 2015;6:301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013;131(4):959–71.

    Article  CAS  PubMed  Google Scholar 

  106. Milne CD, Paige CJ. IL-7: a key regulator of B lymphopoiesis. Semin Immunol. 2006;18(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  107. Middendorp S, et al. Function of Bruton’s tyrosine kinase during B cell development is partially independent of its catalytic activity. J Immunol. 2003;171(11):5988–96.

    Article  CAS  PubMed  Google Scholar 

  108. Melchers F, et al. The surrogate light chain in B-cell development. Immunol Today. 1993;14(2):60–8.

    Article  CAS  PubMed  Google Scholar 

  109. Rolli V, et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell. 2002;10(5):1057–69.

    Article  CAS  PubMed  Google Scholar 

  110. Monroe JG, et al. Positive and negative selection during B lymphocyte development. Immunol Res. 2003;27(2–3):427–42.

    Article  CAS  PubMed  Google Scholar 

  111. Pereira JP, Xu Y, Cyster JG. A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. PLoS One. 2010;5(2):e9277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Pereira JP, et al. Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat Immunol. 2009;10(4):403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013;13(2):118–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 2009;9(11):767–77.

    Article  CAS  PubMed  Google Scholar 

  115. Nutt SL, et al. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015;15(3):160–71.

    Article  CAS  PubMed  Google Scholar 

  116. Parker DC. T cell-dependent B cell activation. Annu Rev Immunol. 1993;11:331–60.

    Article  CAS  PubMed  Google Scholar 

  117. Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722–8.

    Article  CAS  PubMed  Google Scholar 

  118. Yel L. Selective IgA deficiency. J Clin Immunol. 2010;30(1):10–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Scollay R, et al. The role of the thymic cortex and medulla in T cell differentiation. Adv Exp Med Biol. 1985;186:229–34.

    CAS  PubMed  Google Scholar 

  120. Klein L, et al. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol. 2014;14(6):377–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ding L, Shevach EM. Activation of CD4+ T cells by delivery of the B7 costimulatory signal on bystander antigen-presenting cells (trans-costimulation). Eur J Immunol. 1994;24(4):859–66.

    Article  CAS  PubMed  Google Scholar 

  122. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Halle S, Halle O, Forster R. Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends Immunol. 2017;38(6):432–43.

    Article  CAS  PubMed  Google Scholar 

  124. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404.

    Article  CAS  PubMed  Google Scholar 

  125. Ziegler SF. Division of labour by CD4(+) T helper cells. Nat Rev Immunol. 2016;16(7):403.

    Article  CAS  PubMed  Google Scholar 

  126. Leavy O. Regulatory T cells: developing diversity. Nat Rev Immunol. 2016;16(1):2–3.

    Article  PubMed  CAS  Google Scholar 

  127. Fischer A. Severe combined immunodeficiencies. Immunodefic Rev. 1992;3(2):83–100.

    CAS  PubMed  Google Scholar 

  128. Couedel C, et al. Analysis of mutations from SCID and Omenn syndrome patients reveals the central role of the Rag2 PHD domain in regulating V(D)J recombination. J Clin Invest. 2010;120(4):1337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Okoye AA, Picker LJ. CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev. 2013;254(1):54–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Ochs HD, Oukka M, Torgerson TR. TH17 cells and regulatory T cells in primary immunodeficiency diseases. J Allergy Clin Immunol. 2009;123(5):977–83; quiz 984–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Costantino CM, Baecher-Allan C, Hafler DA. Multiple sclerosis and regulatory T cells. J Clin Immunol. 2008;28(6):697–706.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Grinberg-Bleyer Y, et al. Could we cure type 1 diabetes by stimulating T(reg)? Med Sci (Paris). 2011;27(5):471–2.

    Article  Google Scholar 

  133. Richetta AG, et al. CD4+ CD25+ T-regulatory cells in psoriasis. Correlation between their numbers and biologics-induced clinical improvement. Eur J Dermatol. 2011;21(3):344–8.

    Article  PubMed  Google Scholar 

  134. Bao W, et al. Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents. Blood. 2010;116(22):4639–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005;6(4):353–60.

    Article  CAS  PubMed  Google Scholar 

  136. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007;117(5):1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evi X. Stavrou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gollamudi, J., Huang, A.Y., Stavrou, E.X. (2019). Physiological Roles of Leukocytes and Disorders. In: Lazarus, H., Schmaier, A. (eds) Concise Guide to Hematology. Springer, Cham. https://doi.org/10.1007/978-3-319-97873-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97873-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97872-7

  • Online ISBN: 978-3-319-97873-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics