Skip to main content

Low-Power Resistive Bridge Readout Circuit Integrated in Two Millimeter-Scale Pressure-Sensing Systems

  • Chapter
  • First Online:
Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers

Abstract

A duty-cycled bridge-to-digital converter (BDC) for small battery operated pressure sensing systems is presented and demonstrated in two complete microsystems. By heavily duty-cycling an excitation voltage for the bridge sensor, 6000× less excitation power is consumed compared with conventional DC biasing. The excitation voltage is sampled and used to generate an ADC reference voltage to avoid line voltage fluctuation. The BDC achieves 49.2 dB SNR and 2.5 nJ conversion energy with 10.6 pJ/c.s. FOM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang H, Makinwa KAA, Nihtianov S. 9.8 An energy-efficient 3.7nV/√Hz bridge-readout IC with a stable bridge offset compensation scheme. In 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 172–3.

    Google Scholar 

  2. Grezaud R, Sibeud L, Lepin F, Willemin J, Riou JC, Gomez B. A robust and versatile, -40°C to +180°C, 8Sps to 1kSps, multi power source wireless sensor system for aeronautic applications. In 2017 Symposium on VLSI Circuits, 2017, pp. C310–1.

    Google Scholar 

  3. Nguyen TT, Fernandes LAL, Hafliger P. An energy-efficient implantable transponder for biomedical piezo-resistance pressure sensors. IEEE Sens J. 2014;14(6):1836–43.

    Article  Google Scholar 

  4. Donida A, et al. A circadian and cardiac intraocular pressure sensor for smart implantable lens. IEEE Trans Biomed Circuits Syst. 2015;9(6):777–89.

    Google Scholar 

  5. Zang Y, Zhang F, Di C, Zhu D. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz. 2015;2(2):140–56.

    Article  Google Scholar 

  6. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst. 2013;29(7):1645–60.

    Article  Google Scholar 

  7. Oh S, et al. A dual-slope capacitance-to-digital converter integrated in an implantable pressure-sensing system. IEEE J Solid-State Circuits. 2015;50(7):1581–91.

    Article  Google Scholar 

  8. Kim G, et al. A millimeter-scale wireless imaging system with continuous motion detection and energy harvesting. In 2014 Symposium on VLSI Circuits Digest of Technical Papers, 2014, pp. 1–2.

    Google Scholar 

  9. Blaauw D, et al.. IoT design space challenges: Circuits and systems. In 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014, pp. 1–2.

    Google Scholar 

  10. EnerChip, Cymbet Corporation. [Online]. Available: http://www.cymbet.com/. Accessed: 13-Mar-2018.

  11. Maruyama M, Taguchi S, Yamanoue M, Iizuka K. An analog front-end for a multifunction sensor employing a weak-inversion biasing technique with 26 nVrms, 25 aCrms, and 19 fArms input-referred noise. IEEE J Solid-State Circuits. 2016;51(10):2252–61.

    Article  Google Scholar 

  12. Wu R, Chae Y, Huijsing JH, Makinwa KAA. A 20-b ±40-mV range read-out IC with 50-nV offset and 0.04% gain error for bridge transducers. IEEE J Solid-State Circuits. 2012;47(9):2152–63.

    Article  Google Scholar 

  13. Jun J, Rhee C, Kim M, Kang J, Kim S. 19.7 A 21.8b sub-100μHz 1/f corner 2.4μV-offset programmable-gain read-out IC for bridge measurement systems. In 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018.

    Google Scholar 

  14. Oh S, et al.. 19.6 A 2.5nJ duty-cycled bridge-to-digital converter integrated in a 13mm2 pressure-sensing system. In 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018.

    Google Scholar 

  15. Bang S, Blaauw D, Sylvester D, Alioto M. Reconfigurable sleep transistor for GIDL reduction in ultra-low standby power systems. In Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012, pp. 1–4.

    Google Scholar 

  16. Jeong S, et al.. 21.6 A 12nW always-on acoustic sensing and object recognition microsystem using frequency-domain feature extraction and SVM classification. In 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 362–3.

    Google Scholar 

  17. Ginsburg BP, Chandrakasan AP. 500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC. IEEE J Solid-State Circuits. 2007;42(4):739–47.

    Article  Google Scholar 

  18. Kuo YS, et al. MBus: A 17.5 pJ/bit/chip portable interconnect bus for millimeter-scale sensor systems with 8 nW standby power. In Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, 2014, pp. 1–4.

    Google Scholar 

  19. Lee Y, et al. A modular 1 mm die-stacked sensing platform with low power I C inter-die communication and multi-modal energy harvesting. IEEE J Solid-State Circuits. 2013;48(1):229–43.

    Article  Google Scholar 

  20. Ghaed MH, et al. Circuits for a cubic-millimeter energy-autonomous wireless intraocular pressure monitor. IEEE Trans Circuits Syst Regul Pap. 2013;60(12):3152–62.

    Article  Google Scholar 

  21. Jung W, et al. An ultra-low power fully integrated energy harvester based on self-oscillating switched-capacitor voltage doubler. IEEE J Solid-State Circuits. 2014;49(12):2800–11.

    Article  Google Scholar 

  22. Teran AS, et al. AlGaAs photovoltaics for indoor energy harvesting in mm-scale wireless sensor nodes. IEEE Trans Electron Devices. 2015;62(7):2170–5.

    Article  Google Scholar 

  23. Jung W, et al. 8.5 A 60%-efficiency 20nW-500μW tri-output fully integrated power management unit with environmental adaptation and load-proportional biasing for IoT systems. In 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 154–5.

    Google Scholar 

  24. C39, TDK Europe – EPCOS. [Online]. Available: https://en.tdk.eu/pressure_sensor_elements. Accessed: 13-Mar-2018.

  25. K-Series, Merit Sensor. [Online]. Available: https://meritsensor.com/. Accessed: 13-Mar-2018.

  26. Lim W, Jang T, Lee I, Kim H-S, Sylvester D, Blaauw D. A 380pW dual mode optical wake-up receiver with ambient noise cancellation. In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016, pp. 1–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Blaauw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oh, S. et al. (2019). Low-Power Resistive Bridge Readout Circuit Integrated in Two Millimeter-Scale Pressure-Sensing Systems. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers . Springer, Cham. https://doi.org/10.1007/978-3-319-97870-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97870-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97869-7

  • Online ISBN: 978-3-319-97870-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics