Skip to main content

Abstract

Optical sensors, based on the time correlated single photon counting (TCSPC) technique, are found in a range of applications from medical to consumer. This chapter provides an overview of the challenges in TCSPC sensor design for mobile applications. We describe the design of a proof-of-concept TCSPC optical sensor with 10 GS/s conversion rate folded flash time to digital converter (TDC) and on-chip histogram generation, designed to minimize time-domain distortion and have high power efficiency. The proof of concept IC is fabricated in STMicroelectronics 130 nm SPAD foundry process. The system consumes 178.1 pJ per photon at 899 M photon/s, and the TDC achieves state of the art 0.48 pJ/S energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker W. Advanced time-correlated single-photon counting techniques. Berlin/Heidelberg/New York: Springer; 2005.

    Book  Google Scholar 

  2. ST VL531LX TOF Sensor: http://www.st.com/content/st_com/en/products/imaging-and-photonics-solutions/proximity-sensors/vl53l1x.html.

  3. Dutton NAW, et al. A time-correlated single-photon-counting sensor with 14 GS/S histogramming time-to-digital converter. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, 2015.

    Google Scholar 

  4. Finlayson N, Al Abbas T, Mattioli Della Rocca F, Almer O, Gnecchi S, Dutton NAW, Henderson RK. Hypervelocity time-of-flight characterisation of a 14GS/s histogramming CMOS SPAD sensor. In: Proceedings of SPIE 10111, quantum sensing and nano electronics and photonics XIV, 101112Z, 27 Jan 2017.

    Google Scholar 

  5. Dutton NAW, Al Abbas T, et al. A CMOS SPAD sensor with a multi-event folded flash time-to-digital converter for ultra-fast optical transient capture. IEEE Sens J. 2018;18(8):3163–73.

    Article  Google Scholar 

  6. Charbon E. Single-photon imaging in complementary metal oxide semiconductor processes. Philos Trans R Soc A. 2014;372:1–31.

    Article  Google Scholar 

  7. Arlt J, et al. A study of pile-up in integrated time-correlated single photon counting systems. Rev Sci Instrum. 2013;84(10):103–5.

    Article  Google Scholar 

  8. Tyndall D, et al. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS. IEEE Trans Biomed Circuits Syst. 2012;6(6):562–70.

    Article  Google Scholar 

  9. Gnecchi S, et al. Digital silicon photomultipliers with OR/XOR pulse combining techniques. IEEE Trans Electron Devices. 2016;63(3):1105–10.

    Article  Google Scholar 

  10. Gnecchi S, et al. A comparative analysis between OR-based and XOR-based digital silicon photomultipliers for PET. In: Proceedings of IEEE nuclear science symposium, 2015.

    Google Scholar 

  11. Crotti M, Rech I, Ghioni M. Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting. IEEE J Solid-State Circuits. 2012;47(3):699–708.

    Article  Google Scholar 

  12. Favi C, Charbon E. A 17ps time-to-digital converter implemented in 65nm FPGA technology. In: Proceeding of the ACM/SIGDA international symposium on field programmable gate arrays, 2009, p. 113.

    Google Scholar 

  13. Richardson J, et al. A 32x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging. In: Custom integrated circuits conference 2009. CICC ’09. IEEE, 2009, p. 77–80.

    Google Scholar 

  14. Kalisz J. Review of methods for time interval measurements with picosecond resolution. Merologia. 2004;41:17–32.

    Article  Google Scholar 

  15. Roberts G, Ali-Bakhshian M. A brief introduction to time-to-digital and digital-to-time converters. IEEE Trans Circuits Syst II Exp Briefs. 2010;57(3):153–7.

    Article  Google Scholar 

  16. Dutton N, et al. Multiple-event direct to histogram TDC in 65nm FPGA technology. In: Proceedings of IEEE PRIME conference, 2014.

    Google Scholar 

  17. Yousif AS, et al. A fine resolution TDC architecture for next generation PET imaging. IEEE Trans Nucl Sci. 2007;54(5):1574–82.

    Article  Google Scholar 

  18. Haraszti TP. CMOS memory circuits. Norwell: Kluwer; 2000.

    Google Scholar 

  19. Doernberg J, Lee H-S, Hodges DA. Full-speed testing of A/D converters. IEEE J Solid-State Circuits. 1984;SSC-19(6):820–7.

    Article  Google Scholar 

  20. Richardson JA, Grant LA, Henderson RK. Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology. IEEE Photon Technol Lett. 2009;21(14):1020–2.

    Article  Google Scholar 

  21. Niclass C, Soga M, Matsubara H, Kato S, Kagami M. A 100-m range 10-frame/s 340x96-pixel time-of-flight depth sensor in 0.18-μm CMOS. IEEE J Solid-State Circuits. 2013;48(2):559–72.

    Article  Google Scholar 

  22. Elshazly A, Rao S, Young B, Hanumolu PK. A noise-shaping time-to-digital converter using switched-ring oscillators—analysis, design, and measurement techniques. IEEE J Solid-State Circuits. 2014;49(5):1184–1197.

    Article  Google Scholar 

  23. Erdogan AT, Walker R, Finlayson N, Krstajić N, Williams GOS, Henderson RK. A 16.5 Giga events/s 1024 × 8 SPAD line sensor with per-pixel zoomable 50ps-6.4ns/bin histogramming TDC. In: Proceedings of VLSI symposia, 2017.

    Google Scholar 

Download references

Acknowledgments

Salvatore Gnecchi and Luca Parmesan contributed to the design of the sensor. Oscar Almer contributed to the FPGA controller and measurement evaluation system.

Technical discussions with Pascal Mellot, Bruce Rae, Graeme Storm, Andrew Holmes, Lindsay Grant, Sara Pellegrini, and J. Kevin Moore have been influential in this research.

We are grateful to ST Crolles for silicon fabrication and ST for PhD student support for Francescopaulo Mattioli Della Rocca.

Tare Al Abbas acknowledges funding from The University of Edinburgh and PROTEUS project (http://proteus.ac.uk EPSRC grant number EP/K03197X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neale A. W. Dutton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutton, N.A.W., Al Abbas, T., Rocca, F.M.D., Finlayson, N., Rae, B., Henderson, R.K. (2019). Time of Flight Imaging and Sensing for Mobile Applications. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers . Springer, Cham. https://doi.org/10.1007/978-3-319-97870-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97870-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97869-7

  • Online ISBN: 978-3-319-97870-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics