Skip to main content

Nanosensors for Plant Disease Diagnosis: Current Understanding and Future Perspectives

  • Chapter
  • First Online:
Nanoscience for Sustainable Agriculture

Abstract

Reliable and timely detection of plant pathogens plays an important role in crop health monitoring to reduce disease spread and facilitate effective management practices. Several methods have been employed for diagnosing crop diseases including visual inspection of symptoms, serological assays, and DNA-based detection of pathogen. These techniques are less reliable at asymptomatic stage. Additionally, they are time consuming, required costly equipment, produced false negative results from cross contamination, and need professional experts. Another most important limitation is their inability to reach at farmers field. To overcome these hurdles, recent developments in nanotools enabled to miniature the processes for developing biosensors for detecting pathogen presence in plants using antibody, DNA, and volatile compounds as biosensing receptors. Thus, nanobiosensor-based technology provides a new dimension in plant diseases diagnostic systems by offering nondestructive, minimally invasive, economical, and easy-to-use systems with enhanced detection limit, sensitivity, specificity, and on-site detection of plant pathogens. Briefly, the present chapter provides an overview in the development of nanosensing systems for plant pathogen diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618

    Article  CAS  Google Scholar 

  • Baac H, Hajos JP, Lee J, Kim D, Kim SJ, Shuler ML (2006) Antibody-based surface plasmon resonance detection of intact viral pathogen. Biotechnol Bioeng 94:815–819

    Article  CAS  Google Scholar 

  • Bakhori NM, Yusof NA, Abdullah AH, Hussein MZ (2012) Development of fluorescence-based DNA biosensor utilizing quantum dot for early detection of Ganoderma Boninense. IPCBEE 48(26):138–142. https://doi.org/10.7763/IPCBEE.2012.V48.26

    Article  CAS  Google Scholar 

  • Bakhori NM, Yusof NA, Abdullah AH, Hussein MZ (2013) Development of a fluorescence resonance energy transfer (FRET)-based DNA biosensor for detection of synthetic oligonucleotide of Ganoderma boninense. Biosensors 3:419–428

    Article  CAS  Google Scholar 

  • Barry S, O’Riordan A (2015) Electrochemical nanosensors: advances and applications. Rep Electrochem 2016(6):1–14

    Google Scholar 

  • Bebber DP, Holmes T, Gurr SJ (2014) The global spread of crop pests and pathogens. Global Ecol Biogeogr 23:1398–1407. https://doi.org/10.1111/geb.12214

    Article  Google Scholar 

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363

    Article  CAS  Google Scholar 

  • Boonham N, Kreuze J, Winter S, Vlugt R, Bergervoet J, Tomlinson J, Mumford R (2014) Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res 186:20–31

    Article  CAS  Google Scholar 

  • Byrne B, Stack E, Gilmartin N, O’Kennedy R (2009) Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors 9:4407–4445. https://doi.org/10.3390/s90604407

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Park B (2016) Recent advancements in nanobioassays and nanobiosensors for foodborne pathogenic bacteria detection. J Food Prot 79:1055–1069

    Article  CAS  Google Scholar 

  • Cerda R, Avelino J, Gary C, Tixier P, Lechevallier E, Allinne C (2017) Primary and secondary yield losses caused by pests and diseases: assessment and modeling in Coffee. PLoS ONE 12(1):e0169133. https://doi.org/10.1371/journal.pone.0169133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chartuprayoon N, Rheem Y, Chen W, Myung N (2010) Detection of plant pathogen using LPNE grown single conducting polymer Nanoribbon. In: Proceedings of the 218th ECS meeting, 10–15 Oct 2010, Las Vegas, Nevada, p 2278

    Google Scholar 

  • Clausmeyer J, Schuhmann W (2016) Nanoelectrodes: applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging. TrAC Trends Anal Chem 79:46–59

    Article  CAS  Google Scholar 

  • De Boer SH, López MM (2012) New grower-friendly methods for plant pathogen monitoring. Annual Rev Phytopathol 50(1):197–218

    Article  Google Scholar 

  • Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157:417–430

    Article  Google Scholar 

  • Ellinger D, Voigt CA (2014) The use of nanoscale fluorescence microscopic to decipher cell wall modifications during fungal penetration. Front Plant Sci 5:270. https://doi.org/10.3389/fpls.2014.00270

    Article  PubMed  PubMed Central  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20:1055–1058

    Google Scholar 

  • Eun AJ-C, Huang L, Chew F-T, Li SF-Y, Wong S-M (2002) Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J Virol Methods 99:71–79

    Article  CAS  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561. https://doi.org/10.3390/bios5030537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139:3804–3810

    Article  CAS  Google Scholar 

  • Fegla G, Kawanna M (2013) Improved indirect ELISA for detection of some plant viruses. Int J Agric Biol 15:939–944

    Google Scholar 

  • Fernández-Baldo MA, Messina GA, Sanz MI, Raba J (2010) Microfluidic immunosensor with micromagnetic beads coupled to carbon-based screen-printed electrodes (SPCEs) for determination of Botrytis cinerea in tissue of fruits. J Agric Food Chem 10:11201–11206

    Article  Google Scholar 

  • Grecco HE, Verveer PJ (2011) FRET in cell biology: still shining in the age of super-resolution? ChemPhysChem 12:484–490. https://doi.org/10.1002/cphc.201000795

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Xu JM, Ji HF, Li GF, Chen HJ (2014) Quartz crystal microbalance-based biosensor for rapid and sensitive detection of maize chlorotic mottle virus. Anal Methods 6:4530–4536

    Article  CAS  Google Scholar 

  • James C (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5:3497–3502

    Article  Google Scholar 

  • Jasrotia P, Kashyap PL, Bhardwaj AK, Kumar S, Singh GP (2018) Scope and applications of nanotechnology for wheat production: a review of recent advances. Wheat Barley Res 10(1):1–14. https://doi.org/10.25174/2249-4065/2018/76672

    Article  Google Scholar 

  • Kahraman M, Mullen ER, Korkmaz A, Wachsmann-Hogiu S (2017) Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics. https://doi.org/10.1515/nanoph-2016-0174

    Article  Google Scholar 

  • Kashyap PL, Kaur S, Pannu PPS (2018a) Induction of systemic tolerance to Tilletia indica in wheat by plant defence activators. Arch Phytopathol Plant Protect 51(1–2):1–13. https://doi.org/10.1080/03235408.2018.1438778

    Article  CAS  Google Scholar 

  • Kashyap PL, Kaur S, Sanghera GS, Kang SS, Pannu PPS (2011) Novel methods for quarantine detection of Karnal bunt (Tilletia indica) of wheat. Elixir Agric 31:1873–1876

    Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017a) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7–13. https://doi.org/10.1007/s10311-016-0580-4

    Article  CAS  Google Scholar 

  • Kashyap PL, Rai P, Kumar S, Chakdar H, Srivastava AK (2017b) DNA barcoding for diagnosis and monitoring of fungal plant pathogens. In: Singh BP, Gupta VK (eds) Molecular markers in mycology. Springer, Berlin, pp 87–122. https://doi.org/10.1007/978-3-319-34106-4_5

    Chapter  Google Scholar 

  • Kashyap PL, Rai P, Sharma S, Chakdar H, Kumar S, Pandiyan K, Srivastava AK (2016) Nanotechnology for the detection and diagnosis of plant pathogens. In: Ranjan S et al (eds) Nanoscience in food and agriculture 2, sustainable agriculture reviews 21. Springer, Basel, pp 253–276. https://doi.org/10.1007/978-3-319-39306-3_8

    Chapter  Google Scholar 

  • Kashyap PL, Srivastava AK, Tiwari SP, Kumar S (2018b) Microbes for climate resilient agriculture. Wiley, Hoboken, p 376

    Book  Google Scholar 

  • Kashyap PL, Rai P, Srivastava AK, Kumar S (2017c) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33:155. https://doi.org/10.1007/s11274-017-2319-1

    Article  PubMed  Google Scholar 

  • Kaur SI, Kashyap PL, Kang SS, Sharma A (2019) Detection and diagnosis of seed-borne viruses and virus-like pathogens. In: Kumar R, Gupta A (eds) Seed borne diseases of agricultural crops: detection, diagnosis & management. Springer Nature Singapore Pvt Ltd. https://doi.org/10.1007/978-981-32-9046-4_7

  • Khater M, Escosura-Muñiz A, Merkoçi A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86

    Article  CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785. https://doi.org/10.1080/13102818.2014.960739

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Singh R, Kashyap PL, Srivastava AK (2013) Rapid detection and quantification of Alternaria solani in tomato. Sci Hortic 151:184–189

    Article  CAS  Google Scholar 

  • Kwak S-Y, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R, Hamann C, Strano MS (2017) Nanosensor technology applied to living plant systems. Ann Rev Anal Chem 10:113–140

    Article  Google Scholar 

  • Lau HY, Wang Y, Wee EJH, Botella JR, Trau M (2016) Field demonstration of a multiplexed point-of-care diagnostic platform for plant pathogens. Anal Chem 88(16):8074–8081. https://doi.org/10.1021/acs.analchem.6b01551

    Article  CAS  PubMed  Google Scholar 

  • Lau HY, Wu H, Wee EJH, Trau M, Wang Y, Botellab JR (2017) Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci Rep 7:38896. https://doi.org/10.1038/srep38896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Vu NT (2017) Progress of loop-mediated isothermal amplification technique in molecular diagnosis of plant diseases. Appl Biol Chem 60:169–180. https://doi.org/10.1007/s13765-017-0267-y

    Article  CAS  Google Scholar 

  • Lin H-Y, Huang C-H, Lu S-H, Kuo I-T, Chau L-K (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378

    Article  CAS  Google Scholar 

  • López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Mol Biol 11:13–46

    Google Scholar 

  • Malaker PK, Barma NC, Tiwari TP, Collis WJ, Duveiller E, Singh PK, Joshi AK, Singh RP, Braun HJ, Peterson GL, Pedley KF (2016) First report of wheat blast caused by Magnaporthe oryzae pathotype Triticum in Bangladesh. Plant Dis 100:2330

    Article  Google Scholar 

  • Mann SK, Kashyap PL, Sanghera GS, Singh G, Singh S (2008) RNA interference: an eco-friendly tool for plant disease management. Transgenic Plant J 2(2):110–126

    Google Scholar 

  • Martin RR, Constable F, Tzanetakis IE (2016) Quarantine regulations and the impact of modern detection methods. Ann Rev Phytopathol 54(1):189–205

    Article  CAS  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2015) Advanced methods of plant disease detection: a review. Agron Sustain Dev 35:1–25. https://doi.org/10.1007/s13593-014-0246-1

    Article  Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59(2):129–142

    Article  CAS  Google Scholar 

  • Miller SA, Beed FD, Harmon CL (2009) Plant disease diagnostic capabilities and networks. Ann Rev Phytopathol 47:15–38

    Article  CAS  Google Scholar 

  • Nezhad AS (2014) Future of portable devices for plant pathogen diagnosis. Lab Chip 14:2887–2904

    Article  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18:1401–1420

    Article  CAS  Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of candidatus Phytoplasma aurantifolia with a quantum dots FRET-based biosensor. J Plant Pathol 94(3):525–534

    Google Scholar 

  • Rai P, Kashyap PL, Kumar S, Srivastava AK, Trivedi M (2018) Ecology, population biology and management of chilli anthracnose. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 31. Springer, Cham, pp 361–388

    Google Scholar 

  • Ray M, Ray A, Dash S, Mishra A, Gopinath Achary K, Nayak S, Singh S (2017) Fungal disease detection in plants: traditional assays, novel diagnostic techniques and biosensors. Biosens Bioelectron 87:708–723

    Article  CAS  Google Scholar 

  • Rettcher S, Jungk F, Kühn C, Krause H-J, Nölke G, Commandeur U, Fischer R, Schillberg S, Schröper F (2015) Simple and portable magnetic immunoassay for rapid detection and sensitive quantification of plant viruses. Appl Environ Microbiol 81:3039–3048. https://doi.org/10.1128/AEM.03667-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safarpour H, Safarnejad MR, Tabatabaei M, MohsenifarA Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34(4):507–515. https://doi.org/10.1080/07060661.2012.709885

    Article  Google Scholar 

  • Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Article  Google Scholar 

  • Savary S, Ficke A, Aubertot J-N, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4:519–537

    Article  Google Scholar 

  • Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24:250–258. https://doi.org/10.1080/07060660209507006

    Article  CAS  Google Scholar 

  • Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R, Petrillo MD, Luster DG (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Ann Rev Phytopathol 41:305–324. https://doi.org/10.1146/annurev.phyto.41.052002.095435

    Article  CAS  Google Scholar 

  • Sharma S, Rai P, Rai S, Srivastava M, Kashyap PL, Sharma A, Kumar S (2017) Genomic revolution in crop disease diagnosis: a review. In: Singh SS (ed) Plants and microbes in an ever-changing environment. Nova Science Publishers, Inc, Hauppauge, pp 257–293

    Google Scholar 

  • Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016) Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183:2277. https://doi.org/10.1007/s00604-016-1867-7

    Article  CAS  Google Scholar 

  • Singh R, Kumar S, Kashyap PL, Srivastava AK, Mishra S, Sharma AK (2014) Identification and characterization of microsatellite from Alternaria brassicicola to assess cross-species transferability and utility as a diagnostic marker. Mol Biotechnol 56:1049–1059

    Article  CAS  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immune-dipstick test. Thin Solid Films 519:1156–1159

    Article  CAS  Google Scholar 

  • Souiri A, Zemzami M, Amzazi S, Ennaji MM (2014) Polyclonal and monoclonal antibody-based methods for detection of plant viruses. Eur J Sci Res 123(3):281–295

    Google Scholar 

  • Srivastava AK, Dev A, Karmakar S (2018) Nanosensors and nanobiosensors in food and agriculture. Environ Chem Lett 16(1):161–182. https://doi.org/10.1007/s10311-017-0674-7

    Article  Google Scholar 

  • Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V (2015) Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 74(2015):562–574

    Article  CAS  Google Scholar 

  • Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  • Sun LL, Song YH, Wang L, Guo CL, Sun YJ, Liu Z, Li Z (2008) Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J Phys Chem C 112:1415–1422

    Article  CAS  Google Scholar 

  • Vincelli P, Tisserat N (2008) Nucleic acid-based pathogen detection in applied plant pathology. Plant Dis 92(5):660–669. https://doi.org/10.1094/PDIS-92-5-0660

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wei F, Liu SY, Xu Q, Huang JY, Dong XY, Yu JH, Yang Q, Zhao YD, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277–1281

    Article  CAS  Google Scholar 

  • Wei H, Abtahi SMH, Vikesland PJ (2015) Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci. Nano 2:120–135. https://doi.org/10.1039/c4en00211c

    Article  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516

    Article  Google Scholar 

  • Yu L-X, Chao S, Singh RP, Sorrells ME (2017) Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat. PLoS ONE 12(2):e0171963. https://doi.org/10.1371/journal.pone.0171963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuksel S, Schwenkbier L, Pollok S, Weber K, Cialla-May D, Popp J (2015) Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy. Analyst 140:7254–7262

    Article  Google Scholar 

  • Zhang M, ChenW Chen X, Zhang Y, Lin X, Wu Z, Li M (2013) Multiplex immunoassays of plant viruses based on functionalized upconversion nanoparticles coupled with immunomagnetic separation. J Nanomater. https://doi.org/10.1155/2013/317437

    Article  Google Scholar 

  • Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249. https://doi.org/10.1021/ac5039863

    Article  CAS  PubMed  Google Scholar 

  • Zuo P, Lu X, Sun Z et al (2015) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542. https://doi.org/10.1007/s00604-015-1705-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Lal Kashyap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, P.L., Kumar, S., Jasrotia, P., Singh, D.P., Singh, G.P. (2019). Nanosensors for Plant Disease Diagnosis: Current Understanding and Future Perspectives. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_9

Download citation

Publish with us

Policies and ethics