Skip to main content

Carbon Nanomaterials in Agriculture

  • Chapter
  • First Online:

Abstract

Discovery of fullerenes, carbon nanotubes, and graphene in the short period of time and their unique properties led the boom in the applications of carbon nanomaterials (CNMs) on large scale in various industries. Potential applications of these materials in engineering, medical, environmental, and agricultural areas have attracted great interest these days. CNMs like carbon nanotubes, fullerenes, carbon nanoparticles, and carbon nanohorns among others have great application potential in agriculture. The current focus of agriculture research is a sustainable increase in crop production and protection, and CNMs can be very useful in achieving the goals. However, use of these materials also associated with their impact on the environment and other living organisms. Existing literature reveals mixed effects from CNM exposure on plants, ranging from enhanced crop yield to acute cytotoxicity and genetic alteration. This chapter describes the different types of CNMs and their use in different agricultural applications. The objective is to evaluate the current literature, including studies with both positive and negative effects of different CNMs on crop plants and associated organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashfaq M, Verma N, Khan S (2017) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138–148

    Article  CAS  Google Scholar 

  • Atwal A (1986) Future of pesticides in plant protection. Proc Indian Natl Sci Acad Allahabad B 52:77–90

    Google Scholar 

  • Auernhammer H (2001) Precision farming—the environmental challenge. Comput Electron Agric 30:31–43

    Article  Google Scholar 

  • Baptista FR, Belhout S, Giordani S, Quinn S (2015) Recent developments in carbon nanomaterial sensors. Chem Soc Rev 44:4433–4453

    Article  CAS  Google Scholar 

  • Bennett SW, Adeleye A, Ji Z, Keller AA (2013) Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Res 47:4074–4085

    Article  CAS  Google Scholar 

  • Bergmann CP, Machado FM (2015) Carbon nanomaterials as adsorbents for environmental and biological applications. Springer, Berlin, pp. 1–122

    Book  Google Scholar 

  • Cañas JE et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  Google Scholar 

  • Castro MJ, Ojeda C, Cirelli AF (2014) Advances in surfactants for agrochemicals. Environ Chem Lett 12:85–95

    Article  CAS  Google Scholar 

  • Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7:2891–2897

    Article  CAS  Google Scholar 

  • De La Torre-Roche R et al (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Article  Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173:19–27

    Article  Google Scholar 

  • Dugan LL et al (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci 94:9434–9439

    Article  CAS  Google Scholar 

  • Dugan L, Lovett E, Quick K, Lotharius J, Lin T, O’malley K (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Related Disord 7:243–246

    Article  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) [60] Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  CAS  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  Google Scholar 

  • Haghighi M, da Silva JAT (2014) The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol 17:201–208

    Article  Google Scholar 

  • Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906

    Article  CAS  Google Scholar 

  • Hu X, Zhou Q (2014) Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep 4:3782

    Article  Google Scholar 

  • Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033

    Article  CAS  Google Scholar 

  • Jian Y, Taibo L, Haijiang L, Qisheng Y, Yanling Z, Hanping Z, Shixiang Z (2014) Effects of nano-carbon sol on physiological characteristics of root system and potassium absorption of flue-cured tobacco. Tobacco Sci Technol 48:7–11

    Google Scholar 

  • Kelsey JW, White JC (2013) Effect of C60 fullerenes on the accumulation of weathered p, p′- DDE by plant and earthworm species under single and multispecies conditions. Environ Toxicol Chem 32:1117–1123

    Article  CAS  Google Scholar 

  • Kennedy AC, Smith K (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Khodakovskaya MV et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci 108:1028–1033

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kole C et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  Google Scholar 

  • Krusic P, Wasserman E, Keizer P, Morton J, Preston K (1991) Radical reactions of C60. Science 254:1183–1185

    Article  CAS  Google Scholar 

  • Kumar RS et al (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res 20:2593–2602

    Article  Google Scholar 

  • Kumar R, Kushwaha N, Mittal J (2017) Superior, rapid and reversible sensing activity of graphene-SnO hybrid film for low concentration of ammonia at room temperature. Sens Actuators B Chem 244:243–251

    Article  CAS  Google Scholar 

  • Kushwaha N, Mittal J, Pandey S, Kumar R (2018) High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots. Int J Nano Dimens 9:191–197

    CAS  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973

    Article  CAS  Google Scholar 

  • Levetin E et al (2016) Taxonomy of allergenic fungi. J Allergy Clin Immunol Pract 4(375–385):e371

    Google Scholar 

  • Li H et al (2018) Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater 1:663–672

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Lin C, Fugetsu B, Su Y, Watari F (2009) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170:578–583

    Article  CAS  Google Scholar 

  • Liu Q et al (2010) Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–5748

    Article  CAS  Google Scholar 

  • Liu X et al (2013) Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water. J Mater Chem A 1:1875–1884

    Article  CAS  Google Scholar 

  • Lota G, Frackowiak E, Mittal J, Monthioux M (2007) High performance supercapacitor from chromium oxide-nanotubes based electrodes. Chem Phys Lett 434:73–77

    Article  CAS  Google Scholar 

  • Mahpishanian S, Sereshti H, Baghdadi M (2015) Superparamagnetic core–shells anchored onto graphene oxide grafted with phenylethyl amine as a nano-adsorbent for extraction and enrichment of organophosphorus pesticides from fruit, vegetable and water samples. J Chromatogr A 1406:48–58

    Article  CAS  Google Scholar 

  • Maliyekkal SM, Sreeprasad T, Krishnan D, Kouser S, Mishra AK, Waghmare UV, Pradeep T (2013) Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9:273–283

    Article  CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  • Mittal J (2013) Synthesis of Co filled carbon nanotubes by in situ reduction of CoCl2 filled nanotubes by NaBH4. ISRN Mater Sci 2013

    Google Scholar 

  • Mittal J, Kushwaha N (2015) Over-oxidation of multi-walled carbon nanotubes and formation of fluorescent carbon nanoparticles. Mater Lett 145:37–40

    Article  CAS  Google Scholar 

  • Mittal J, Lin KL (2011) The formation of electric circuits with carbon nanotubes and copper using tin solder. Carbon 49:4385–4391

    Article  CAS  Google Scholar 

  • Mittal J, Lin KL (2013) Connecting carbon nanotubes using Sn. J Nanosci Nanotechnol 13:5590–5596

    Article  CAS  Google Scholar 

  • Mittal J, Lin K (2017a) Carbon nanotube-based interconnections. J Mater Sci 52:643–662

    Article  CAS  Google Scholar 

  • Mittal J, Lin KL (2017b) Bulk thermal conductivity studies of Sn/SnO coated and filled multiwalled carbon nanotubes for thermal interface material. Fullerenes Nanotubes Carbon Nanostruct 25:301–305

    Article  CAS  Google Scholar 

  • Mittal J, Monthioux M, Allouche H, Stephan O (2001) Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air. Chem Phys Lett 339:311–318

    Article  CAS  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  Google Scholar 

  • Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 12:2212–2220

    Article  CAS  Google Scholar 

  • Pandey K, Lahiani MH, Hicks VK, Hudson MK, Green MJ, Khodakovskaya M (2018) Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PloS one 13:e0202274

    Article  Google Scholar 

  • Parisi C, Vigani M, Cerezo ER (2014) Proceedings of a Workshop on “Nanotechnology for the agricultural sector: from research to the field”.  JRC Working Papers JRC89736, Joint Research Centre (Seville site)

    Google Scholar 

  • Pei Z, Li L, Sun L, Zhang S, Shan X-q, Yang S, Wen B (2013) Adsorption characteristics of 1, 2, 4-trichlorobenzene, 2, 4, 6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 51:156–163

    Article  CAS  Google Scholar 

  • Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    Article  CAS  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8:17–29

    Article  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 33:155–169

    Google Scholar 

  • Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62:4833–4838

    Article  CAS  Google Scholar 

  • Saxena M, Maity S, Sarkar S (2014) Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Adv 4:39948–39954

    Article  CAS  Google Scholar 

  • Sen Gupta S, Chakraborty I, Maliyekkal SM, Adit Mark T, Pandey DK, Das SK, Pradeep T (2015) Simultaneous dehalogenation and removal of persistent halocarbon pesticides from water using graphene nanocomposites: a case study of lindane. ACS Sustain Chem Eng 3:1155–1163

    Article  CAS  Google Scholar 

  • Simonet BM, Valcárcel M (2009) Monitoring nanoparticles in the environment. Anal Bioanal Chem 393:17

    Article  CAS  Google Scholar 

  • Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143

    Article  CAS  Google Scholar 

  • Sonkar SK, Roy M, Babar DG, Sarkar S (2012) Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale 4:7670–7675

    Article  CAS  Google Scholar 

  • Srivastava V, Gusain D, Sharma YC (2015) Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54:6209–6233

    Article  CAS  Google Scholar 

  • Su L-X, Ma X-L, Zhao K-K, Shen C-L, Lou Q, Yin D-M, Shan C-X (2018) Carbon nanodots for enhancing the stress resistance of peanut plants. ACS Omega 3:17770–17777

    Article  CAS  Google Scholar 

  • Suarez-Martinez I, Mittal J, Allouche H, Pacheco M, Monthioux M, Razafinimanana M, Ewels CP (2013) Fullerene attachment to sharp-angle nanocones mediated by covalent oxygen bridging. Carbon 54:149–154

    Article  CAS  Google Scholar 

  • Szekacs A, Komives T (2017) Research directions in plant protection chemistry. Ecocycles 3:4–12

    Article  Google Scholar 

  • Tan X-m, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tao X, Yu Y, Fortner JD, He Y, Chen Y, Hughes JB (2015) Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: evaluation of the sub-lethal photosynthetic responses and inhibition mechanism. Chemosphere 122:162–167

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671

    Article  CAS  Google Scholar 

  • Tiwari D, Dasgupta-Schubert N, Cendejas LV, Villegas J, Montoya LC, García SB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    Article  CAS  Google Scholar 

  • Tournas V (2005) Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit Rev Microbiol 31:33–44

    Article  CAS  Google Scholar 

  • Tripathi S, Sarkar S (2015) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 5:609–616

    Article  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181

    Article  CAS  Google Scholar 

  • Tripathi S, Kapri S, Datta A, Bhattacharyya S (2016) Influence of the morphology of carbon nanostructures on the stimulated growth of gram plant. RSC Adv 6:43864–43873

    Article  CAS  Google Scholar 

  • Tripathi KM, Bhati A, Singh A, Sonker AK, Sarkar S, Sonkar SK (2017) Sustainable changes in the contents of metallic micronutrients in first generation gram seeds imposed by carbon nano-onions: life cycle seed to seed study. ACS Sustain Chem Eng 5:2906–2916

    Article  CAS  Google Scholar 

  • Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12:158–169

    Article  CAS  Google Scholar 

  • Zaytseva O, Neumann G (2016) Carbon nanomaterials: production, impact on plant development, agricultural and environmental applications. Chem Biol Technol Agric 3:17

    Article  Google Scholar 

  • Zhang C et al (2015) Preparation of cellulose/graphene composite and its applications for triazine pesticides adsorption from water. ACS Sustain Chem Eng 3:396–405

    Article  CAS  Google Scholar 

  • Zheng Y et al (2017) Bioimaging application and growth-promoting behavior of carbon dots from pollen on hydroponically cultivated Rome Lettuce. ACS Omega 2:3958–3965

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagjiwan Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mittal, J., Osheen, S., Gupta, A., Kumar, R. (2019). Carbon Nanomaterials in Agriculture. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_7

Download citation

Publish with us

Policies and ethics