Skip to main content

Role of Metal–Organic Framework (MOF) for Pesticide Sensing

  • Chapter
  • First Online:
Book cover Nanoscience for Sustainable Agriculture

Abstract

Metal–organic framework (MOF) is a three-dimensional porous network built on unique coordination of metal and organic linkers. Few characteristic features such as wide variation in secondary building unit (SBU), abundant functional groups, tuneable porosity, exclusive optical properties, enormous absorption capacity and incredible catalytic properties enable MOF as one of the promising materials in a large number of applications. Starting from removal of pollutants and toxic chemicals from wastewater, catalysing very important and apparently impossible reactions, efficient absorption and separation of gases, hydrogen generation, smart sensing, light emission devices, dialytic membrane to drug delivery, briefly in every aspect of MOF and its composite find major role to play. Strategies adopted to synthesize MOF include conventional technique (solvothermal and non-solvothermal), microwave, electrochemical, sonochemical and mechanochemical. All these techniques have its own advantages and disadvantages and hence silhouette the ultimate properties and applications. Out of wide range of applications, pesticide sensing could be one of the most successful uses of MOF and its composite. The present chapter briefly describes an overview of the applications of MOF and its composites towards pesticide sensing using various types of transducing techniques like optical, electrochemical and chromatography. MOF itself can detect nitro containing organophosphorus (OP) efficiently and selectively via fluorescence imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhameed RM, Abdel-Gawad H, Elshahat M, Emam HE (2016) Cu–BTC@ cotton composite: design and removal of ethion insecticide from water. Rsc Adv 6:42324–42333

    Article  CAS  Google Scholar 

  • Bae Y-S et al (2008) Separation of CO2 from CH4 using mixed-ligand metal—organic frameworks. Langmuir 24:8592–8598

    Article  CAS  Google Scholar 

  • Barreto AS et al (2010) Potential of a metal–organic framework as a new material for solid-phase extraction of pesticides from lettuce (Lactuca sativa), with analysis by gas chromatography-mass spectrometry. J Separ Sci 33:3811–3816

    Article  CAS  Google Scholar 

  • Bashtani E, Amiri A, Baghayeri M (2018) A nanocomposite consisting of poly (methyl methacrylate), graphene oxide and Fe3O4 nanoparticles as a sorbent for magnetic solid-phase extraction of aromatic amines. Microchimica Acta 185:14

    Article  Google Scholar 

  • Bhardwaj SK, Bhardwaj N, Mohanta GC, Kumar P, Sharma AL, Kim K-H, Deep A (2015) Immunosensing of atrazine with antibody-functionalized Cu–MOF conducting thin films. ACS Appl Mater Interf 7:26124–26130

    Article  CAS  Google Scholar 

  • Cao X et al (2017) SERS-active metal–organic frameworks with embedded gold nanoparticles. Analyst 142:2640–2647

    Article  CAS  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  • Chalati T, Horcajada P, Gref R, Couvreur P, Serre C (2011) Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J Mater Chem 21:2220–2227

    Article  CAS  Google Scholar 

  • Cravillon J, Münzer S, Lohmeier S-J, Feldhoff A, Huber K, Wiebcke M (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21:1410–1412

    Article  CAS  Google Scholar 

  • Czaja AU, Trukhan N, Müller U (2009) Industrial applications of metal–organic frameworks. Chem Soc Rev 38:1284–1293

    Article  CAS  Google Scholar 

  • Deep A, Bhardwaj SK, Paul A, Kim K-H, Kumar P (2015) Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens Bioelectron 65:226–231

    Article  CAS  Google Scholar 

  • Denysenko D et al (2011) Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. Chem A Eur J 17:1837–1848

    Article  CAS  Google Scholar 

  • Friščić T, Reid DG, Halasz I, Stein RS, Dinnebier RE, Duer MJ (2010) Ion-and liquid-assisted grinding: improved mechanochemical synthesis of metal–organic frameworks reveals salt inclusion and anion templating. Angewandte Chemie 122:724–727

    Article  Google Scholar 

  • Fujii K et al (2010) Direct structure elucidation by powder X-ray diffraction of a metal–organic framework material prepared by solvent-free grinding. Chem Commun 46:7572–7574

    Article  CAS  Google Scholar 

  • Furukawa H et al (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428

    CAS  PubMed  Google Scholar 

  • Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. Matthews, NC : CEM Publishing

    Google Scholar 

  • Huang L, Wang H, Chen J, Wang Z, Sun J, Zhao D, Yan Y (2003) Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater 58:105–114

    Article  CAS  Google Scholar 

  • Jhung SH, Lee JH, Yoon JW, CSerre, Férey G, Chang JS (2007) Microwave synthesis of chromium terephthalate MIL-101 and Its benzene sorption ability. Adv Mater 19(1):121–124

    Article  CAS  Google Scholar 

  • Jin D, Xu Q, Yu L, Hu X (2015) Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125 (Ti)/TiO2. Microchimica Acta 182:1885–1892

    Article  CAS  Google Scholar 

  • Khan NA, Kang IJ, Seok HY, Jhung SH (2011) Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101. Chem Eng J 166(3):1152–1157

    Article  CAS  Google Scholar 

  • Khazalpour S, Safarifard V, Morsali A, Nematollahi D (2015) Electrochemical synthesis of pillared layer mixed ligand metal–organic framework: DMOF-1–Zn. Rsc Adv 5:36547–36551

    Article  CAS  Google Scholar 

  • Kim DO et al (2011a) Synthesis of MOF having functional side group. Inorg Chim Acta 370:76–81

    Article  CAS  Google Scholar 

  • Kim J, Yang S-T, Choi SB, Sim J, Kim J, Ahn W-S (2011b) Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J Mater Chem 21:3070–3076

    Article  CAS  Google Scholar 

  • Klimakow M, Klobes P, Thünemann AF, Rademann K, Emmerling F (2010) Mechanochemical synthesis of metal−organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem Mater 22(18):5216–5221

    Article  CAS  Google Scholar 

  • Kumar P, Paul A, Deep A (2014) Sensitive chemosensing of nitro group containing organophosphate pesticides with MOF-5. Microporous Mesoporous Mater 195:60–66

    Article  CAS  Google Scholar 

  • Li H, Eddaoudi M, Groy TL, Yaghi O (1998) Establishing microporosity in open metal − organic frameworks: gas sorption isotherms for Zn (BDC)(BDC = 1, 4-benzenedicarboxylate). J Am Chem Soc 120:8571–8572

    Article  CAS  Google Scholar 

  • Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework nature 402:276

    CAS  Google Scholar 

  • Li P, Moon S-Y, Guelta MA, Harvey SP, Hupp JT, Farha OK (2016) Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal–organic framework engenders thermal and long-term stability. J Am Chem Soc 138:8052–8055

    Article  CAS  Google Scholar 

  • Li Y, Liang F, Bux H, Yang W, Caro J (2010) Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J Membr Sci 354:48–54

    Article  CAS  Google Scholar 

  • Liu Y, Gao Z, Wu R, Wang Z, Chen X, Chan T-WD (2017) Magnetic porous carbon derived from a bimetallic metal–organic framework for magnetic solid-phase extraction of organochlorine pesticides from drinking and environmental water samples. J Chromatogr A 1479:55–61

    Article  CAS  Google Scholar 

  • Lu C-M, Liu J, Xiao K, Harris AT (2010) Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chem Eng J 156:465–470

    Article  CAS  Google Scholar 

  • Ma J, Wu G, Li S, Tan W, Wang X, Li J, Chen L (2018) Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination. J Chromatogr A 1553:57–66

    Article  CAS  Google Scholar 

  • Ma J, Yao Z, Hou L, Lu W, Yang Q, Li J, Chen L (2016) Metal organic frameworks (MOFs) for magnetic solid-phase extraction of pyrazole/pyrrole pesticides in environmental water samples followed by HPLC-DAD determination. Talanta 161:686–692

    Article  CAS  Google Scholar 

  • Maniam P, Stock N (2011) Investigation of porous Ni-based metal–organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods. Inorg Chem 50:5085–5097

    Article  CAS  Google Scholar 

  • Mueller U, Puetter H, Hesse M, Wessel H (2007) WO 2005/049892, 2005 BASF Aktiengesellschaft

    Google Scholar 

  • Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal–organic frameworks—prospective industrial applications. J Mater Chem 16:626–636

    Article  CAS  Google Scholar 

  • Ni Z, Masel RI (2006) Rapid production of metal—organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc 128:12394–12395

    Article  CAS  Google Scholar 

  • Park KS et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191

    Article  CAS  Google Scholar 

  • Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. Cryst Eng Comm 8:211–214

    Article  CAS  Google Scholar 

  • Qian K, Deng Q, Fang G, Wang J, Pan M, Wang S, Pu Y (2016) Metal–organic frameworks supported surface–imprinted nanoparticles for the sensitive detection of metolcarb. Biosens Bioelectron 79:359–363

    Article  CAS  Google Scholar 

  • Rudd ND, Wang H, Teat SJ, Li J (2018) A dual linker metal-organic framework demonstrating ligand-based emission for the selective detection of carbon tetrachloride. Inorg Chim Acta 470:312–317

    Article  CAS  Google Scholar 

  • Seo Y-K, Hundal G, Jang IT, Hwang YK, Jun C-H, Chang J-S (2009) Microwave synthesis of hybrid inorganic–organic materials including porous Cu3 (BTC)2 from Cu (II)-trimesate mixture. Microporous Mesoporous Mater 119:331–337

    Article  CAS  Google Scholar 

  • Singha DK, Majee P, Mondal SK, Mahata P (2017) Highly selective aqueous phase detection of azinphos-methyl pesticide in ppb level using a cage-connected 3D MOF. ChemistrySelect 2:5760–5768

    Article  CAS  Google Scholar 

  • Son W-J, Kim J, Kim J, Ahn W-S (2008) Sonochemical synthesis of MOF-5. Chem Commun 6336–6338

    Google Scholar 

  • Stock N, Biswas S (2011) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969

    Article  Google Scholar 

  • Tao C-L et al (2017) A highly luminescent entangled metal–organic framework based on pyridine-substituted tetraphenylethene for efficient pesticide detection. Chem Commun 53:9975–9978

    Article  CAS  Google Scholar 

  • Tonigold M et al (2009) Heterogeneous catalytic oxidation by MFU-1: a Cobalt (II)-containing metal–organic framework. Angew Chem Int Ed 48:7546–7550

    Article  CAS  Google Scholar 

  • Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64:8553–8557

    Article  CAS  Google Scholar 

  • Van Assche TR, Desmet G, Ameloot R, De Vos DE, Terryn H, Denayer JF (2012) Electrochemical synthesis of thin HKUST-1 layers on copper mesh. Microporous Mesoporous Mater 158:209–213

    Article  Google Scholar 

  • Wade CR, Li M, Dincă M (2013) Facile deposition of multicolored electrochromic metal–organic framework thin films. Angew Chem Int Ed 52:13377–13381

    Article  CAS  Google Scholar 

  • Wang X, Ma X, Wang H, Huang P, Du X, Lu X (2017) A zinc (II) benzenetricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides. Microchimica Acta 184:3681–3687

    Article  CAS  Google Scholar 

  • Wang Y-P, Wang F, Luo D-F, Zhou L, Wen L-L (2012) A luminescent nanocrystal metal–organic framework for sensing of nitroaromatic compounds. Inorg Chem Commun 19:43–46

    Article  Google Scholar 

  • Wei W, Dong S, Huang G, Xie Q, Huang T (2018) MOF-derived Fe2O3 nanoparticle embedded in porous carbon as electrode materials for two enzyme-based biosensors. Sens Actuators B: Chem 260:189–197

    Article  CAS  Google Scholar 

  • Wen L-L, Wang F, Leng X-K, Wang C-G, Wang L-Y, Gong J-M, Li D-F (2010) Efficient detection of organophosphate pesticide based on a metal—organic framework derived from biphenyltetracarboxylic acid. Cryst Growth Des 10:2835–2838

    Article  CAS  Google Scholar 

  • Willans CE et al (2011) Tripodal imidazole frameworks: reversible vapour sorption both with and without significant structural changes. Dalton Trans 40:573–582

    Article  CAS  Google Scholar 

  • Xiang Z, Cao D, Shao X, Wang W, Zhang J, Wu W (2010) Facile preparation of high-capacity hydrogen storage metal-organic frameworks: a combination of microwave-assisted solvothermal synthesis and supercritical activation. Chem Eng Sci 65:3140–3146

    Article  CAS  Google Scholar 

  • Xu X et al (2018) Sensitive detection of pesticides by a highly luminescent metal-organic framework. Sens Actuators B Chem 260:339–345

    Article  CAS  Google Scholar 

  • Yang Q et al (2017) Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chem Eng J 313:19–26

    Article  CAS  Google Scholar 

  • Yoo Y, Lai Z, Jeong H-K (2009) Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater 123:100–106

    Article  CAS  Google Scholar 

  • Yuan W, Garay AL, Pichon A, Clowes R, Wood CD, Cooper AI, James SL (2010) Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3 (BTC)2 (BTC = 1, 3, 5-benzenetricarboxylate). Cryst Eng Comm 12:4063–4065

    Article  CAS  Google Scholar 

  • Zhang S, Jiao Z, Yao W (2014) A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J Chromatogr A 1371:74–81

    Article  CAS  Google Scholar 

  • Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112(2):673–674

    Article  CAS  Google Scholar 

  • Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J, Gu J (2014) Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl Mater Interf 7:223–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinku Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chansi, Bhardwaj, R., Hadwani, K., Basu, T. (2019). Role of Metal–Organic Framework (MOF) for Pesticide Sensing. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_4

Download citation

Publish with us

Policies and ethics