Skip to main content

Nanomaterials for Active and Smart Packaging of Food

  • Chapter
  • First Online:
Nanoscience for Sustainable Agriculture

Abstract

Need for the storage and transport of food materials into different geographical locations stimulated the requirement of various advances in packaging. Active and smart packaging add new dimension in the packaging industry by contributing various performance characteristics in addition to storage and transportation. The requirements of online monitoring, monitoring and control of pest and diseases, controlled ripening of fruits, sensing the spoilage of food materials, etc., could be satisfied by the innovative packaging like active and smart packaging. For better and efficient performance, the nanomaterials come handy due to their size and efficiency. This chapter focuses on the use of various nanomaterials in active and smart packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahvenainen R (2008) Active and intelligent packaging: an introduction. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  • Almenar E, Catala R, Hernandez-Munoz P, Gavara R (2009) Optimization of an active package for wild strawberries based on the release of 2-nonanone. LWT-Food Sci Technol 42:587–593

    Article  CAS  Google Scholar 

  • Bang G, Kim SW (2012) Biodegradable poly(lactic acid)-based hybrid coating materials for food packaging films with gas barrier properties. J Ind Eng Chem 18:1063–1068

    Article  CAS  Google Scholar 

  • Batista RA, Espitia PJP, Quintans JSS, Freitas MM, Cerqueira MA, Teixeira JA, Cardoso JC (2019) Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym 205:106–116

    Article  CAS  PubMed  Google Scholar 

  • Berenzon S, Saguy IS (1998) Oxygen absorbers for extension of crackers shelf life. LWT Food Sci Technol 31(1):1–5

    Article  CAS  Google Scholar 

  • Biji KB, Ravishankar CN, Mohan CO, Srinivasa Gopal TK (2015) Smart packaging systems for food applications: a review. J Food Sci Technol 52(10):6125–6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brody AL, Strupinsky ER, Kline LR (2001) Odor removers. In: Brody AL, Strupinsky ER, Kline LR (eds) Active packaging for food applications. Technomic Publishing Company Inc, Lancaster, PA, pp 107–117

    Chapter  Google Scholar 

  • Busolo MA, Fernandez P, Ocio MJ, Lagaron JM (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit Contam 27:1617–1626

    Article  CAS  Google Scholar 

  • Busolo MA, Lagaron JM (2012) Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innov Food Sci Emerg Technol 16:211–217

    Article  CAS  Google Scholar 

  • Cichello SA (2015) Oxygen absorbers in food preservation: a review. J Food Sci Technol 52:1889–1895

    Article  CAS  PubMed  Google Scholar 

  • Coma V (2008) Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci 78:90–103

    Article  CAS  PubMed  Google Scholar 

  • Connolly KB (2018) Smart barcodes let brands easily join the internet of (packaged) things in Smart Packaging (on April 05, 2018). https://www.packagingdigest.com/smart-packaging/smart-barcodes-let-brands-easily-join-the-internet-of-packaged-things-2018-04-05

  • Coralia VG, Gye HS, Jun TK (2018) Metal oxide-based nanocomposites in food packaging: applications, migration, and regulations. Trends Food Sci Technol 82:21–31

    Article  CAS  Google Scholar 

  • Cruz-Romero M, Murphy T, Morris M, Cummins E, Kerry J (2013) Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 34:393–397

    Article  CAS  Google Scholar 

  • Dainelli D, Gontard N, Spyropoulos D, Zondervan-van den Beuken E, Tobback P (2008) Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol 19:S103–S112

    Article  CAS  Google Scholar 

  • Day BPF (2001) Active packaging—a fresh approach. J Brand Technol 1(1):32–41

    Google Scholar 

  • de Azeredo HM, Rosa MF, Figueirêdo MCB (2018) Lignocellulosic-based nanostructures and their use in food packaging. In: Cerqueira MÂPR, Lagaron JM, Castro LMP, de Oliveira Soares Vicente AAM (eds) Nanomaterials for food packaging. Elsevier, Amsterdam, pp 47–69

    Chapter  Google Scholar 

  • de Kruift N, Van Beest M, Rijk R, Sipilainen-Malm T, Paseiro Losada P, De Meulenaer B (2002) Active and intelligent packaging: application and regulatory aspects. Food Addit Contam 19(1):144–162

    Google Scholar 

  • Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21(3):692–701

    Article  CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22:408–413

    Article  CAS  Google Scholar 

  • Fang Z, Zhao Y, Warner RD, Johnson SK (2017) Active and intelligent packaging in meat industry. Trends Food Sci Technol 61:60–71

    Article  CAS  Google Scholar 

  • Fathima M (2017) How smart packaging sensors safeguard foods and drugs in Smart Packaging (on April 13, 2017). https://www.packagingdigest.com/smart-packaging/how-smart-packaging-sensors-safeguard-foods-and-drugs-2017-04-13

  • Floros JD, Dock LL, Han JH (1997) Active packaging technologies and applications. Food Cosmet Drug Package 20(1):10–17

    Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Jiménez A, Kenny JM (2013) Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J Food Eng 118:117–124

    Article  CAS  Google Scholar 

  • Gaikwad KK, Singh S, Ajji A (2018) Moisture absorbers for food packaging applications. Environ Chem Lett 17:609–628

    Article  CAS  Google Scholar 

  • Gerez CL, Torres MJ, Font de Valdez G, Rollan G (2013) Control of spoilage fungi by lactic acid bacteria. Biol Control 64(3):231–237

    Article  CAS  Google Scholar 

  • Goh K, Heising JK, Yuan Y, Karahan HE, Wei L, Zhai S, Koh JX, Htin NM, Zhang F, Wang R, Fane AG (2016) Sandwich-architectured poly(lactic acid)–graphene composite food packaging films. ACS Appl Mater Interfaces 8:9994–10004

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Estaca J, Lopez-de-Dicastillo C, Hernández-Muñoz P, Catalá R, Gavara R (2014) Advances in antioxidant active food packaging. Trends Food Sci Technol 35:42–51

    Article  CAS  Google Scholar 

  • Gontard N (2006) Tailor made food packaging concept. In: IUFoST, 13th World congress of food science and technology, food is life, Nantes, France, pp 17–21

    Google Scholar 

  • Hoseinnejad M, Jafari SM, Katouzian I (2018) Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol 44:161–181

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss JH (1997) Food-packaging interactions influencing quality and safety. Food Addit Contam 14(6–7):601–607

    Article  CAS  PubMed  Google Scholar 

  • Hurme, E (2002) An overview of new intelligent packaging systems for food products. In: Brydon L, Campden C (eds) Second international conference on active and intelligent packaging, CCFRA

    Google Scholar 

  • Kale V, Jani K, Rangaprasad R, Vasudeo Y (2003) Evaluation of performance of additives used in LDDPE films for active packaging applications. In: Addcon 9th international plastic additives and modifiers conference

    Google Scholar 

  • Labuza TP, Breene WM (1989) Applications of active packaging for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. J Food Proc Preserv 13(1):1–69

    Article  CAS  Google Scholar 

  • Lee DS, Shin DH, Lee CH, Kim JC, Cheigh HS (2001) The use of physical carbon dioxide adsorbents to control pressure buildup and volume expansion of kimchi packages. J Food Eng 48:183–188

    Article  Google Scholar 

  • Li L, Zhao C, Zhang Y, Yao J, Yang W, Hu Q, Wang C, Cao C (2017) Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in storage of rice. Food Chem 215:477–482

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen W, Kim H (2012) Synthesis, characterization and hydrolytic degradation of polyactide/poly(ethylene glycol) nano-silica composite films. J Macromol Sci A 49(4):348–354

    Article  CAS  Google Scholar 

  • Mahalik NP, Nambiar AN (2010) Trends in food packaging and manufacturing systems and technology. Trends Food Sci Technol 21(3):117–128

    Article  CAS  Google Scholar 

  • Majeed K, Jawaid M, Hassan A, Bakar AA, Abdul Khalil HPS, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibers filled hybrid composites. Mater Des 46:391–410

    Article  CAS  Google Scholar 

  • Mane K (2016) A review on active packaging: an innovation in food packaging. Int J Environ Agric Biotechnol 1:544–549

    Article  Google Scholar 

  • Merritt S, Wan C, Shollock B, Patole S, Haddleton DM (2018) Polymer/graphene nanocomposites for food packaging. In: Cirillo G, Kozlowski MA, Spizzirri UG (eds) Composites materials for food packaging. Scrivener Publishing LLC, pp 251–267

    Google Scholar 

  • Mexis SF, Chouliara E, Kontominas MG (2012) Shelf life extension of ground chicken meat using an oxygen absorber and a citrus extract. LWT Food Sci Technol 49(1):21–27

    Article  CAS  Google Scholar 

  • Mirabelli V, Majidi Salehi S, Angiolillo L, Belviso BD, Conte A, Del Nobile MA, Di Profio G, Caliandro R (2018) Enzyme crystals and hydrogel composite membranes as new active food packaging. Mater Global Chall 2:1700089

    Article  Google Scholar 

  • Mlalila N, Kadam DM, Swai H, Hilonga A (2016) Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques. J Food Sci Technol 53(9):3395–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu H, Gao H, Chen H, Fang X, Han Q (2017) A novel controlled release ethanol emitter: preparation and effect on some postharvest quality parameters of Chinese bayberry during storage. J Sci Food Agric 97:4929–4936

    Article  CAS  PubMed  Google Scholar 

  • Ouattara B, Simard RE, Piette G, Begin A, Holley RA (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with Chitosan. Int J Food Microbiol 62:139–148

    Article  CAS  Google Scholar 

  • Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci Nutr 44(3):185–193

    Article  CAS  PubMed  Google Scholar 

  • Paine FA (2012) The packaging users handbook. AVI, Van Nostrand Reinhold

    Google Scholar 

  • Panda SK, Shetty PH (2018) Innovations in technologies for fermented food and beverage industries. Springer, Berlin

    Book  Google Scholar 

  • Poubol J, Izumi H (2005) Physiology and microbiological quality of fresh-cut mango cubes as affected by high-O2 controlled atmospheres. J Food Sci 70:286–291

    Article  Google Scholar 

  • Powers TH, Calvo WJ (2003) Moisture regulation. In: Ahvenainen R (ed) Novel food packaging techniques. Woodhead Publishing Ltd, Cambridge, pp 172–185

    Chapter  Google Scholar 

  • Prasad P, Kochhar A (2014) Active packaging in food industry: a review. J Environ Sci Toxicol Food Technol 8(5):1–7

    Google Scholar 

  • Regier M (2014) Microwavable food packaging. In: Han JH (ed) Innovations in food packaging. Academic Press, San Diego, pp 495–514

    Chapter  Google Scholar 

  • Robertson G (2006) Food packaging principles and practices. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Rooney ML (1995) Active packaging in polymer films. In: Rooney ML (ed) Active food packaging. Blackie Academic and Professional, Glasgow, pp 74–110

    Chapter  Google Scholar 

  • Rvspayeva A, Jones TD, Hughes PA, Esfahani MN, Shuttleworth MP, Harris RA, Kay RW, Desmulliez MP, Marques-Hueso J (2018) PEI/Ag as an optical gas nano-sensor for intelligent food packaging. In: 2018 IEEE 18th international conference on nanotechnology (IEEE-NANO). IEEE, pp 1–4

    Google Scholar 

  • Singh P, Wani AA, Saengerlaub S (2011) Active packaging of food products: recent trends. Nutr Food Sci 41(4):249–260

    Article  Google Scholar 

  • Suman G, Suk SY (2018) Oxygen scavenging films in food packaging. Environ Chem Lett 16(2):523–538

    Article  CAS  Google Scholar 

  • Summers L (1992) Intelligent packaging. Centre for Exploitation of Science and Technology, London

    Google Scholar 

  • Sun B, Zhao Y, Yu J, Ling J, Shang H, Liu Z (2017) The combined efficacy of superchilling and high CO2 modified atmosphere packaging on shelf life and quality of swimming crab (Portunus trituberculatus). J Aquat Food Prod Technol 26:655–664

    Article  CAS  Google Scholar 

  • Sundramoorthy AK, Gunasekaran S (2014) Applications of graphene in quality assurance and safety of food. TrAC Trends Anal Chem 60:36–53

    Article  CAS  Google Scholar 

  • Sung SY, Sin LT, Tee TT, Bee ST, Rahmat AR, Rahman WA, Tan AC, Vikhraman M (2013) Antimicrobial agents for food packaging applications. Trends Food Sci Technol 33(2):110–123

    Article  CAS  Google Scholar 

  • Svensson A (2004) Active food packaging -materials and interactions: a literature review. SIK, The Swedish institute for food and biotechnology, Göteborg report no. 727

    Google Scholar 

  • Terry LA, Ilkenhans T, Poulston S, Rowsell L, Smith AJ (2007) Development of new palladium-promoted ethylene scavenger. Postharvest Biol Technol 45:214–220

    Article  CAS  Google Scholar 

  • Tewari G, Jayas DS, Jeremiah LE, Holley RA (2002) Absorption kinetics of oxygen scavengers. Int J Food Sci Technol 37:209–217

    Article  CAS  Google Scholar 

  • Torres-Giner S, Echegoyen Y, Teruel-Juanes R, Badia J, Ribes-Greus A, Lagaron J (2018) Electrospun poly(ethylene-co-vinyl alcohol)/graphene nanoplatelets composites of interest in intelligent food packaging applications. Nanomaterials 8:745

    Article  PubMed Central  CAS  Google Scholar 

  • Tripathi RM, Pudake RN, Shrivastav B, Shrivastav A (2018) Antibacterial activity of poly(vinyl alcohol)—biogenic silver nanocomposite film for food packaging material. Adv Nat Sci Nanosci Nanotechnol 9:025020

    Article  CAS  Google Scholar 

  • Tulsyan G, Richter C, Diaz CA (2017) Oxygen scavengers based on titanium oxide nanotubes for packaging applications. Packag Technol Sci 30:251–256

    Article  CAS  Google Scholar 

  • Venkatesan R, Rajeswari N (2016) Preparation, mechanical and antimicrobial properties of SiO2/poly(butylene adipate-co-terephthalate) films for active food packaging. Silicon 1–7

    Google Scholar 

  • Vera P, Echegoyen Y, Canellas E, Nerín C, Palomo M, Madrid Y, Cámara C (2016) Nano selenium as antioxidant agent in a multilayer food packaging material. Anal Bioanal Chem 408:6659–6670

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Ammayappan L, Huang Q (2011) Effect of gum Arabic on distribution behavior of nanocellulose fillers in starch film. Appl Nanosci 1(3):137–142

    Article  CAS  Google Scholar 

  • Wyrwa J, Barska A (2017) Innovations in the food packaging market: active packaging. Eur Food Res Technol 243(10):1681–1692

    Article  CAS  Google Scholar 

  • Yang W, Fortunati E, Bertoglio F, Owczarek JS, Bruni G, Kozanecki M, Kenny JM, Torre L, Visai L, Puglia D (2018) Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym 181:275–284

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Owczarek JS, Fortunati E, Kozanecki M, Mazzaglia A, Balestra GM, Kenny JM, Torre L, Puglia D (2016) Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind Crops Prod 94:800–811

    Article  CAS  Google Scholar 

  • Yildirim S, Rocker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Radusin T, Suminska P, Marcos B, Coma V (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17(1):165–199

    Article  Google Scholar 

  • Zhu DY, Rong MZ, Zhang MQ (2015) Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog Polym Sci 49–50:175–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vigneshwaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vigneshwaran, N., Kadam, D.M., Patil, S. (2019). Nanomaterials for Active and Smart Packaging of Food. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_22

Download citation

Publish with us

Policies and ethics