Skip to main content

Nanotechnology for Aquaculture

  • Chapter
  • First Online:
Nanoscience for Sustainable Agriculture

Abstract

As a part of sustainable culture, aquaculture is objectively a very promising activity comparing to other livestock production industries. Practically, aquaculture encounters serious challenges causing numerous drawbacks at multiple levels such as water infection, pond contamination, biofouling, chronic/acute diseases, and postharvest preservation. Researchers and overseers in the aquaculture industry have continually adopted new technologies to overcome most of these serious challenges; nanotechnology is among the prominent technologies to be applied in many aquaculture pundits. The different practical applications of nanotechnology in aquaculture disciplines are to be presented throughout this chapter. The application of nanotechnology in water and wastewater remediation, e.g., disinfection, sterilization, detoxification, and monitoring, is also discussed. The involvement of nanotechnology in aquatic organisms’ performance and health in terms of vaccination, drug delivery, monitoring, antimicrobial application, reproduction control, and functional feeding is also mentioned. Additionally, the role of nanotechnology in harvested fish manufacturing, preservation, packaging, and commercialization is emphasized. The current chapter gives an overview about the current and potential nanotechnology applications in aquaculture and the suggestions to get the maximum benefit from it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarca RL, RodrĂ­guez FJ, Guarda A et al (2016) Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem 196:968–975

    Article  CAS  PubMed  Google Scholar 

  • Abdallah H, Moustafa AF, AlAnezi AA et al (2014) Performance of a newly developed titanium oxide nanotubes/polyethersulfone blend membrane for water desalination using vacuum membrane distillation. Desalination 346:30–36. https://doi.org/10.1016/j.desal.2014.05.003

    Article  CAS  Google Scholar 

  • Acar Ăś, Kesbiç OS, Yılmaz S, GĂĽltepe N, TĂĽrker A (2015) Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture 437:282–286

    Article  CAS  Google Scholar 

  • Ahmad T, Wani IA, Lone IH et al (2013) Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull 48(1):12–20

    Article  CAS  Google Scholar 

  • Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  PubMed  Google Scholar 

  • Al-Bastaki NM (2004) Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chem Eng Process 43(7):935–940

    Article  CAS  Google Scholar 

  • Alboofetileh M, Rezaei M, Hosseini H et al (2016) Efficacy of activated alginate-based nanocomposite films to control Listeria monocytogenes and spoilage flora in rainbow trout slice. J Food Sci Technol 53:521–530

    Article  CAS  PubMed  Google Scholar 

  • Alessio S (2015) Use of nanoscale zero-valent iron (NZVI) particles for chemical denitrification under different operating conditions. Metals (Basel) 5:1507–1519. https://doi.org/10.3390/met5031507

    Article  CAS  Google Scholar 

  • Alexander S, Mewhinney M (2008) NASA Nanotechnology-Based Biosensor Helps Detect Biohazards. RELEASE: 08-131

    Google Scholar 

  • Alishahi A, Mirvaghefi A, Tehrani MR et al (2011) Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr Polym 86(1):142–146

    Article  CAS  Google Scholar 

  • Alishahi A, Proulx J, Aider M (2014) Chitosan as bio-based nanocomposite in seafood industry and aquaculture. In: Kim S-K (ed) Seafood science: advances in chemistry, technology and applications. CRC Press, Boca Raton, FL, pp 211–231

    Chapter  Google Scholar 

  • Almeelbi T, Bezbaruah A (2012) Aqueous phosphate removal using nanoscale zero-valent iron. J Nanoparticle Res 14:1–14

    Article  CAS  Google Scholar 

  • Antony JJ, Nivedheetha M, Siva D et al (2013) Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla. Colloids Surf B: Biointerfaces 109:20–24

    Article  CAS  PubMed  Google Scholar 

  • Anusha P, Thangaviji V, Velmurugan S et al (2014) Protection of ornamental gold fish Carassius auratus against Aeromonas hydrophila by treating Ixora coccinea active principles. Fish Shellfish Immunol 36:485–493

    Article  CAS  PubMed  Google Scholar 

  • Ashraf PM, Edwin L (2016) Nano copper oxide incorporated polyethylene glycol hydrogel: an efficient antifouling coating for cage fishing net. Int Biodeter Biodegr 115:39–48

    Article  CAS  Google Scholar 

  • Aulenta F, Hayes W, Rannard S (2003) Dendrimers: a new class of nanoscopic containers and delivery devices. Eur Polym J 39(9):1741–1771

    Article  CAS  Google Scholar 

  • Avnimelech Y, Kochba M (2009) Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15 N tracing. Aquaculture 287:163–168

    Article  CAS  Google Scholar 

  • Ayala-Núñez NV, Lara HH, Turrent LDCI et al (2009) Silver nanoparticles toxicity and bactericidal effect against methicillin resistant Staphylococcus aureus: nanoscale does matter. NanoBiotechnology 5:2–9

    Article  CAS  Google Scholar 

  • Baltic MZ, Boskovic M, Ivanovic J et al (2013) Nanotechnology and its potential applications in meat industry. Tehnologija Mesa 54:168–175

    Article  Google Scholar 

  • Baptista P, Pereira E, Eaton P et al (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391(3):943–950

    Article  CAS  PubMed  Google Scholar 

  • Baser KHC, Buchbauer G (2015) Handbook of essential oils: science, technology and applications. 2nd edn, CRC Press, Boca Raton, FL

    Google Scholar 

  • Becker AG, Parodi TV, Heldwein CG et al (2011) Transportation of silver catfish, Rhamdia quelen, inwaterwith eugenol and the essential oil of Lippia alba. Fish Physiol Biochem 38:789–796

    Article  PubMed  CAS  Google Scholar 

  • Benotti MJ, Stanford BD, Wert EC et al (2009) Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res 43(6):1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Benovit SC, Gressler LT, de Lima Silva L et al (2012) Anesthesia and transport of Brazilian Flounder Paralichthys orbignyanus, with essential oils of Aloysia gratissima and Ocimum gratissimum. J World Aquac Soc 43:896–900

    Article  Google Scholar 

  • Bentley JA (2015) Landscape, natural character, aquaculture and the NZKS Supreme Court decision. In: Australasian Coasts & Ports conference: 22nd Australasian Coastal and Ocean Engineering Conference and the 15th Australasian Port and Harbour conference 62

    Google Scholar 

  • Bergshoef MM, Vancso GJ (1999) Transparent Nanocomposites with Ultrathin, Electrospun Nylon-4,6 Fiber Reinforcemen. Adv Mater 11:1362–1365

    Article  CAS  Google Scholar 

  • Bhat IA, Rather MA, Saha R et al (2016) Expression analysis of Sox 9 genes during annual reproductive cycles in gonads and after nanodelivery of LHRH in Clarias batrachus. Res vet Sci 106:100–106. https://doi.org/10.1016/j.rvsc.2016.03.022

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Reddy SJ, Hasan MM et al (2015) Nanotechnology: a unique future technology in aquaculture for the food security. Int J Bioassays 4(07):4115–4126

    CAS  Google Scholar 

  • Bora T, Dutta J (2014) Applications of nanotechnology in wastewater treatment—a review. J Nanosci Nanotechnol 14:613–626

    Article  CAS  PubMed  Google Scholar 

  • Borgogna M, Bellich B, Cesaro A (2011) Marine polysaccharides in microencapsulation and application to aquaculture: “from sea to sea”. Mar Drugs 9:2572–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowker J, Trushenski JT, Gaikowski MP et al (2016) Guide to using drugs, biologics, and other chemicals in aquaculture. American Fisheries Society Fish Culture Section [Cited 20 Jan 2016.] Available from URL: http://www.fishculturesection.org/DrugGuide/Files/GUIDE_FEB_2011.pdf

  • Boyd CE, Tucker CS (2012) Pond aquaculture water quality management. Springer Science & Business Media, Berlin

    Google Scholar 

  • Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooker AJ, Shinn AP, Bron JE (2007) A review of the biology of the parasitic copepod Lernaeocera branchialis (L., 1767) (Copepoda: Pennellidae). Adv Parasitol 65:297–341

    Article  PubMed  Google Scholar 

  • Brunet L, Lyon DY, Hotze EM et al (2009) Comparative photoactivity and antibacterial properties of C-60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43(12):4355–4360

    Article  CAS  PubMed  Google Scholar 

  • Calo JR, Crandall PG, O’Bryan CA et al (2015) Essential oils as antimicrobials in food systems—a review. Food Control 54:111–119

    Article  CAS  Google Scholar 

  • Can E, Kizak V, Kayim M et al (2011) Nanotechnological applications in aquaculture-seafood industries and adverse effects of nanoparticles on environment. J Mater Sci Eng 5:605–609

    Google Scholar 

  • Cao C, Yang D, Zhou Y (2015) The applications of manufactured nanomaterials in aquaculture. J Comput Theor Nanosci 12:2624–2629

    Article  CAS  Google Scholar 

  • Carroll ML, Cochrane S, Fieler R et al (2003) Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques. Aquaculture 226:165–180

    Article  CAS  Google Scholar 

  • Cavalieri F, Tortora M, Stringaro A et al (2014) Nanomedicines for antimicrobial interventions. J Hosp Infect 88(4):183–190

    Article  CAS  PubMed  Google Scholar 

  • Champ MA (2003) Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems. Mar Pollut Bull 46:935–940

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Judeh ZMA (2016) Impact of encapsulation on the physicochemical properties and gastrointestinal stability of fish oil. LWT-Food Sci Technol 65:206–213

    Article  CAS  Google Scholar 

  • Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 225:95–603

    Google Scholar 

  • Chen B, Zou L, Wu Z, Sun M (2016) The application of quantum dots in aquaculture pollution detection. Toxicol Environ Chem 98:385–394

    Article  CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. https://doi.org/10.1016/j.tifs.2011.09.004

    Article  CAS  Google Scholar 

  • Chen L, Zhao X, Pan B et al (2015) Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. J Hazard Mater 284:35–42. https://doi.org/10.1016/j.jhazmat.2014.10.048

    Article  CAS  PubMed  Google Scholar 

  • Chen PJ, Wu WL, Wu KCW (2013) The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Res 47:3899–3909

    Article  CAS  PubMed  Google Scholar 

  • Cheng TC, Yao KS, Yeh N et al (2009) Visible light activated bactericidal effect of TiO2/Fe3O4 magnetic particles on fish pathogens. Surf Coat Technol 204(6):1141–1144

    Article  CAS  Google Scholar 

  • Cheng TC, Yao KS, Yeh N et al (2011) Bactericidal effect of blue LED light irradiated TiO2/Fe3O4 particles on fish pathogen in seawater. Thin Solid Films 519(15):5002–5006

    Article  CAS  Google Scholar 

  • Chifiriuc MC, Kamerzan C, Lazar V (2017) Essential oils and nanoparticles. In: Ficai A, Grumezescu AM (eds) Nanostructures for Antimicrobial Therapy,. Elsevier, Amsterdam, pp 279–291

    Chapter  Google Scholar 

  • Chong MN, Jin B, Chow CWK et al (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Article  CAS  PubMed  Google Scholar 

  • Christofoli M, Costa ECC, Bicalho KU et al (2015) Insecticidal effect of nano-encapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crops Prod 70:301–308

    Article  CAS  Google Scholar 

  • Ciobanu A, Mallard I, Landy D et al (2012) Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr Polym 87:1963–1970

    Article  CAS  Google Scholar 

  • Cockburn A, Bradford R, Buck N et al (2012) Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem Toxicol 50:2224–2242

    Article  CAS  PubMed  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Compagnone D, McNeil CJ, Athey D et al (1995) An amperometric NADH biosensor based on NADH oxidase from Thermus aquaticus. Enzyme Microb Technol 17:472–476. https://doi.org/10.1016/0141-0229(94)00110-D

    Article  CAS  Google Scholar 

  • Cortes-Rojas DF, Souza CRF, Oliveira WP (2014) Encapsulation of eugenol rich clove extract in solid lipid carriers. J Food Eng 127:34–42

    Article  CAS  Google Scholar 

  • Crab R, Kochva M, Verstraete W et al (2009a) Bio-flocs technology application in over-wintering of tilapia. Aquac Eng 40:105–112

    Article  Google Scholar 

  • Crab R, Kochva M, Verstraete W, Avnimelech Y (2009b) Bio-flocs technology application in over-wintering of tilapia. Aquacult Eng 40:105–112

    Article  Google Scholar 

  • Cui Y, Zhao Y, Tian Y et al (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33(7):2327–2333

    Article  CAS  PubMed  Google Scholar 

  • Da Cunha MA, de Barros FMC, de Oliveira Garcia L et al (2010) Essential oil of Lippia alba: a new anesthetic for silver catfish, Rhamdia quelen. Aquaculture 306:403–406

    Article  CAS  Google Scholar 

  • Da Rosa CG, de Oliveira MV, de Carvalho SM et al (2015) Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids Surf A Physicochem Eng Asp 481:337–344

    Article  CAS  Google Scholar 

  • Dananjaya SHS, Kulatunga DCM, Godahewa GI et al (2017) Preparation, characterization, and antimicrobial properties of chitosan-silver nanocomposites films against fish pathogenic bacteria and fungi. Indian J Microbiol 57(4):427–437. https://doi.org/10.1007/s12088-017-0670-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danner GR, Muto KW, Zieba AM et al (2011) Spearmint (L -Carvone) oil and wintergreen (methyl salicylate) oil emulsion is an effective immersion anesthetic of fishes. J Fish Wildl Manag 2:146–155

    Article  Google Scholar 

  • Dasgupta N, Ranjan S, Patra D et al (2016a) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Interact 253:100–111. https://doi.org/10.1016/j.cbi.2016.05.018

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Ranjan S, Rajendran B et al (2016b) Thermal coreduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pol Res 23:4149–4163

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15:591–605. https://doi.org/10.1007/s10311-017-0648-9

    Article  CAS  Google Scholar 

  • De Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  CAS  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  PubMed Central  Google Scholar 

  • De Oliveira EF, Paula HCB, de Paula RCM (2014) Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf B Biointerfaces 113:146–151

    Article  PubMed  CAS  Google Scholar 

  • Demou E, Stark WJ, Hellweg S (2009) Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 53:829–838

    CAS  PubMed  Google Scholar 

  • Deng Y, Cheng Q (2003) Affects of nano-selenium on the growth of Nile tilapia (Oreochromis niloticus). Inland Aquat Prodd 6:28–30

    Google Scholar 

  • DeWalt BR, RamĂ­rez Zavala JR, Noriega L et al (2002) Shrimp Aquaculture, the People and the Environment in Coastal Mexico: Report Prepared Under the World Bank, NACA, WWF, and FAO Consortium Program on Shrimp Farming and the Environment. Network of Aquaculture Centers in Asia-Pacific. Bangkok, Thailand

    Google Scholar 

  • Dhawan A, Shanker R, Das M et al (2011) Guidance for safe handling of nanomaterials. J Biomed Nanotechnol 7:218–224. https://doi.org/10.1166/jbn.2011.1276

    Article  CAS  PubMed  Google Scholar 

  • Donbrow M (1991) Microcapsules and nanoparticles in medicine and pharmacy. CRC Press, Boca Raton, FL

    Google Scholar 

  • Drobek M, Yacou C, Motuzas J et al (2012) Long term pervaporation desalination of tubular MFI zeolite membranes. J Membr Sci 415–416:816–823. https://doi.org/10.1016/j.memsci.2012.05.074

    Article  CAS  Google Scholar 

  • Dumbauld B, McCoy L (2015) Effect of oyster aquaculture on seagrass Zostera marina at the estuarine landscape scale in Willapa Bay, Washington (USA). Aquac Environ Interact 7:29–47

    Article  Google Scholar 

  • Dursun S, Erkan N, Yesiltas M (2010) Application of natural biopolymer based nanocomposite films in seafood. J Fishe Sci 4(1):50–77

    CAS  Google Scholar 

  • Dutkiewicz J, Kucharska M (1992) Advances in Chitin and Chitosan. In: Brine CJ, Sandford PA, Zikakis JP (eds). Elsevier Science, pp 54–60

    Google Scholar 

  • El-Deen AG, Barakat NAM, Khalil KA et al (2014a) Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization. Ceram Int 40:14627–14634. https://doi.org/10.1016/j.ceramint.2014.06.049

    Article  CAS  Google Scholar 

  • El-Deen AG, Barakat NAM, Kim HY (2014b) Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 344:289–298. https://doi.org/10.1016/j.desal.2014.03.028

    Article  CAS  Google Scholar 

  • Eldridge JH, Hammond CJ, Meulbroek JA et al (1990) Controlled vaccine release in gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer’s patches. J Control Release 11:205–214

    Article  CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 1:3–6

    Article  Google Scholar 

  • Esmaeili A, Asgari A (2015) In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Int J Biol Macromol 81:283–290

    Article  CAS  PubMed  Google Scholar 

  • Essalhi M, Khayet M (2014) Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: effects of polymer concentration and desalination by direct contact membrane distillation. J Membr Sci 454:133–143. https://doi.org/10.1016/j.memsci.2013.11.056

    Article  CAS  Google Scholar 

  • Faiz H, Zuberi A, Nazir S (2015) Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int J Agr Biol 17:568–574

    CAS  Google Scholar 

  • Fan HL, Zhou SF, Jiao WZ et al (2017) Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydr Polym 147:1192–1200. https://doi.org/10.1016/j.carbpol.2017.07.050

    Article  CAS  Google Scholar 

  • FAO (2008) State of World fisheries and Aquaculture (SOFIA). FAO Rome, Italy

    Google Scholar 

  • FAO (2009) Fish stat plus. FAO, Rome, Italy

    Google Scholar 

  • FAO (2016a) State of World Fisheries and Aquaculture 2016 (Spanish). Food & Agriculture Org S l Rome

    Google Scholar 

  • FAO (2016b) Contributing to food security and nutrition for all. (The State of World Fisheries and Aquaculture). Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Farmen L (2009) Commercialization of nanotechnology for removal of heavy metals in drinking water. In: Savage N, Diallo M Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. William Andrew Inc. Norwich, pp 115–130

    Chapter  Google Scholar 

  • Faunce T, Bruce A, Donohoo A et al (2014) Nanomaterial governance, planetary health and the sustainocene transition. In: Hull M, Bowman D (eds) Nanotechnology environmental health and safety. 2nd edn. William Andrew Inc., Norwich

    Google Scholar 

  • Fenaroli F et al (2014) Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment ACS nano 8:7014–7026

    CAS  PubMed  Google Scholar 

  • Feng C, Khulbe KC, Matsuura T (2010) Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J Appl Polym Sci 115:756–776

    Article  CAS  Google Scholar 

  • Feng N (2012) Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomed 7:2033–2043

    Article  CAS  Google Scholar 

  • Ferosekhan S, Gupta S, Singh AR et al (2014) RNA-loaded chitosan nanoparticles for enhanced growth, immune-stimulation and disease resistance in fish. Curr Nanosci 10(3):453–464

    Article  CAS  Google Scholar 

  • Florence AT, Hillery AM, Hussain N et al (1995) Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release 36:39–44

    Article  CAS  Google Scholar 

  • Frans I, Michiels CW, Bossier P et al (2011) Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis 34:643–661

    Article  CAS  PubMed  Google Scholar 

  • Freccia A, Sousa SMN, Meurer F et al (2014) Essential oils in the initial phase of broodstock diets of Nile tilapia. Revista Brasileira de Zootecnia 43:1–7

    Article  Google Scholar 

  • Fujishima A, Zhang XT, Tryk DA (2008) TiO(2) photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Article  CAS  Google Scholar 

  • Futalan CM, Kan CC, Dalida ML et al (2011) Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite. Carbohyd Polym 83:697–704

    Article  CAS  Google Scholar 

  • Gaffney AM, Santos-Martinez MJ, Satti A et al (2015) Blood biocompatibility of surface-bound multiwalled carbon nanotubes. Nanomedicine 11(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Sun Z, Li K et al (2013) Integrated oil separation and water purification by a double-layer TiO2-based mesh. Energy Environ Sci 6:1147–1151

    Article  CAS  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerber LC, Moser N, Luechinger NA et al (2012) Phosphate starvation as an antimicrobial strategy: the controllable toxicity of lanthanum oxide nanoparticles. Chem Commun 48:3869–3871

    Article  CAS  Google Scholar 

  • Ghayempour S, Montazer M (2016) Micro/nanoencapsulation of essential oils and fragrances: focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J Microencapsul 1–14

    Google Scholar 

  • Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Gjedrem T (2015) Disease resistant fish and shellfish are within reach: a review. J Mar Sci Eng 3:146–153

    Article  Google Scholar 

  • Goh PS, Ismail AF, Ng BC (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308:2–14

    Article  CAS  Google Scholar 

  • Gomez-Casado E, Estepa A, Coll JM (2011) A comparative review on European-farmed finfish RNA viruses and their vaccines. Vaccine 29:2657–2671

    Article  CAS  PubMed  Google Scholar 

  • Graham K, Ouyang M, Raether T et al (2002) Polymeric Nanofibers in Air Filtration Applications. 15th Annual Technical Conference and Expo of the American Filtration and Separations Society, Galveston, TX, vol 4, pp 9–12

    Google Scholar 

  • Granada L, Sousa N, Lopes S, Lemos MF (2016) Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? A Rev Aquac 8:283–300

    Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700

    Article  Google Scholar 

  • Guo J, Zhang R, Yang N (2016) An Immunomagnetic-nanoparticle-based microfluidic system for rapid separation and detection of aquaculture pathogens. J Comput Theor Nanosci 13:2226–2231

    Article  CAS  Google Scholar 

  • Gupta R, Kulkarni GU (2011) Removal of organic compounds from water by using a gold nanoparticle–poly(dimethyl siloxane) nanocomposite foam. Chem Sus Chem 1–8

    Google Scholar 

  • Han D, Hong J, Kim HC et al (2013) Multiplexing enhancement for the detection of multiple pathogen DNA. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2013.8096

    Article  CAS  PubMed  Google Scholar 

  • Handy RD (2012) FSBI Briefing Paper: Nanotechnology in Fisheries and Aquaculture. Fisheries Society of the British Isles (www.fsbi.org.uk/assets/brief-nanotechnology-fisheries aquaculture.pdf)

  • Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9:125–144. https://doi.org/10.1080/13698570701306807

    Article  Google Scholar 

  • Hao LH, Wang ZY, Xing BS (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J Environ Sci 10:1459–1466. https://doi.org/10.1016/s1001-0742(08)

    Article  Google Scholar 

  • Hernandez A, Garcia B, Caballero MJ et al (2016) The inclusion of thyme essential oil in the feed of gilthead seabream (Sparus aurata) promotes changes in the frequency of lymphocyte aggregates in gut-associated lymphoid tissue. Aquac Res 47:3341–3345

    Article  CAS  Google Scholar 

  • Hill LE, Gomes C, Taylor TM (2013) Characterization of beta cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT -Food Sci Technol 51:86–93

    Article  CAS  Google Scholar 

  • Hindi KM, Ditto AJ, Panzner MJ et al (2009) The antimicrobial efficacy of sustained release silver–carbine complex-loaded L-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo studies. Biomaterials 30(22):3771–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoek EMV, Ghosh AK (2009) Nanotechnology-based membranes for water purification. Nanotechnol Appl Clean Water 4:47–58

    Article  Google Scholar 

  • Hossain MK, Ghosh SC, Boontongkong Y et al (2005) Growth of zinc oxide nanowires and nanobelts for gas sensing applications. J Metastab Nanocryst Mater 23:27–30. https://doi.org/10.4028/www.scientific.net/JMNM.23.27

    Article  CAS  Google Scholar 

  • Hosseini SF, Zandi M, Rezaei M et al (2013) Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym 95:50–56

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang X, Xiao Z et al (2015) Effect of chitosan nanoparticles loaded with cinnamon essential oil on the quality of chilled pork. LWT—Food Sci Technol 63:519–526

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B et al (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 212:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  Google Scholar 

  • Huang CM, Chen CH, Pornpattananangkul D et al (2011) Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials 32(1):214–221

    Article  CAS  PubMed  Google Scholar 

  • Huang LQ, Xu Y, Guo SL (2010) Disinfecting aquatic pathogenic bacteria by photocatalytic activity with nanometer TiO2. J Jimei Univ (Nat Sci) 4:54–57. https://doi.org/10.3969/j.issn.1007-7405.2010.04.003 In Chinese with English abstract

    Article  CAS  Google Scholar 

  • Huang S, Wang L, Liu L et al (2015) Nanotechnology in agriculture, livestock and aquaculture in China. A review. Agron Sustain Dev 35:369–400

    Article  Google Scholar 

  • Ilham FR, Munilkumar S (2016) Effects of organic selenium supplementation on growth, glutathione peroxidase activity and histopathology in juvenile barramundi (Lates calcarifer Bloch 1970) fed high lupin meal-based diets. Aquaculture 457:15–23

    Article  CAS  Google Scholar 

  • Jacobs JM, Stine CB, Baya AM et al (2009) A review of mycobacteriosis in marine fish. J Fish Dis 32:119–130

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Shivendu R, Nandita D et al (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2016.1160363

    Article  PubMed  CAS  Google Scholar 

  • Jain KK (2003) Nano-diagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Jani P, Halbert GW, Langridge J et al (1990) Nanoparticles uptake by rat gastrointestinal mucosa: quantitation and particles size dependency. J Pharm Pharmacol 42:821–826

    Article  CAS  PubMed  Google Scholar 

  • Jaroenram W, Arunrut N, Kiatpathomchai W (2012) Rapid and sensitive detection of shrimp yellow head virus using loop-mediated isothermal amplification and a colorogenic nanogold hybridization probe. J Virol Methods 186(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Javahery S, Nekoubin H, Moradlu AH (2012) Effect of anaesthesia with clove oil in fish (review). Fish Physiol Biochem 38:1545–1552

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84

    Article  CAS  Google Scholar 

  • Ji J, Torrealba D, Ruyra Ă€, Roher N (2015) Nanodelivery systems as new tools for immunostimulant or vaccine administration: targeting the fish immune system. Biology 4:664–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Valdeperez D, Nazarenus M et al (2015) Future perspectives towards the use of nanomaterials for smart food packaging and quality control. Part Part Syst Charact 32:408–416

    Article  Google Scholar 

  • JimĂ©nez-Fernández E, Ruyra A, Roher N et al (2014) Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture 432:426–433

    Article  CAS  Google Scholar 

  • Joe MM, Chauhan PS, Bradeeba K et al (2011) Influence of sunflower oil based nanoemulsion (AUSN-4) on the shelf life and quality of Indo-Pacific king mackerel (Scomberomorus guttatus) steaks stored at 20 C. Food Control 23:564–570. https://doi.org/10.1016/j.foodcont.2011.08.032

    Article  CAS  Google Scholar 

  • Joukar F, Hosseini SMH, Moosavi-Nasab M et al (2017) Effect of Farsi gum-based antimicrobial adhesive coatings on the refrigeration shelf life of rainbow trout fillets. LWT—Food Sci Technol 80:1–9

    Article  CAS  Google Scholar 

  • Jovanović B, Anastasova L, Rowe EW et al (2011) Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol Environ Saf 74(4):675–683

    Article  PubMed  CAS  Google Scholar 

  • Jovanović B, Whitley EM, Kimura K et al (2015) Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environ Pollut 203:153–164

    Article  PubMed  CAS  Google Scholar 

  • Justino CI, Duarte KR, Freitas AC, Panteleitchouk TS, Duarte AC, Rocha-Santos TA (2016) Contaminants in aquaculture: overview of analytical techniques for their determination. TrAC Trends Anal Chem 80:293–310

    Article  CAS  Google Scholar 

  • Kabeel AE, El-Said EMS (2013) A hybrid solar desalination system of air humidification-dehumidification and water flashing evaporation. Part I. A numerical investigation. Desalination 320:56–72. https://doi.org/10.1016/j.desal.2013.04.016

    Article  CAS  Google Scholar 

  • Kabeel AE, El-Said EMS (2014) A hybrid solar desalination system of air humidification, dehumidification and water flashing evaporation: part II. Experimental investigation. Desalination 341:50–60. https://doi.org/10.1016/j.desal.2014.02.035

    Article  CAS  Google Scholar 

  • Katuli KK, Amiri BM, Massarsky A et al (2014a) Impact of a short-term diazinon exposure on the osmoregulation potentiality of Caspian roach (Rutilus rutilus) fingerlings. Chemosphere 31(108):396–404

    Article  CAS  Google Scholar 

  • Katuli KK, Massarsky A, Hadadi A et al (2014b) Silver nanoparticles inhibit the gill Na+/K+-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio). Ecotoxicol Environ Saf 106:173–180

    Article  CAS  PubMed  Google Scholar 

  • Khoo L (2000) Fungal diseases in fish. J Exotic Pet Med 9:102–111

    Article  Google Scholar 

  • Khosravi-Katuli K, Prato E, Lofrano G et al (2017) Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res 24:17326–17346. https://doi.org/10.1007/s11356-017-9360-3

    Article  Google Scholar 

  • Kim J (1997) Improved mechanical properties of composites using ultrafine electrospun fibers. Ph.D. dissert, University of Akron, Ohio, 216p

    Google Scholar 

  • Kim J, Lee CW, Choi W (2010) Platinized WO (3) as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44(17):6849–6854

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park N, Na JH et al (2016) Development of natural insect-repellent loaded halloysite nanotubes and their application to food packaging to prevent Plodia interpunctella infestation. J Food Sci 81:E1956–E1965

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Sung WS, Moon SK et al (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3(1):340–366

    Article  CAS  Google Scholar 

  • Ko W, Jung N, Lee M et al (2013) Electronic nose based on multi-patterns of ZnO nanorods on a quartz resonator with remote electrodes. ACS Nano 7:6685–6690

    Article  CAS  PubMed  Google Scholar 

  • Kominami H, Yabutani K, Yamamoto T et al (2001) Synthesis of highly active tungsten(VI) oxide photocatalysts for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions. J Mater Chem 11(12):3222–3227

    Article  CAS  Google Scholar 

  • Konsowa AH (2007) Ecological studies on fish farms of El-Fayom depression (Egypt). Egy J Aqua Res 33:290–300

    Google Scholar 

  • Krkošek M, Ford JS, Morton A, Lele S, Myers RA, Lewis MA (2007) Declining wild salmon populations in relation to parasites from farm salmon. Science 318:1772–1775

    Article  PubMed  CAS  Google Scholar 

  • Kuan GC, Sheng LP, Rijiravanich P et al (2013) Gold-nanoparticle based electrochemical DNA sensor for the detection of fish pathogen Aphanomyces invadans. Talanta 117:312–317

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Chawla J (2014) Removal of cadmium ion from water/wastewater by nano-metal oxides: a review. Water Qual Expo Heal 5:215–226. https://doi.org/10.1007/s12403-013-0100-8

    Article  CAS  Google Scholar 

  • Kumar S, Ahlawat W, Bhanjana G et al (2014) Nanotechnology-based water treatment strategies. J Nanosci Nanotechnol 14:1838–1858

    Article  CAS  PubMed  Google Scholar 

  • Kuswandi B (2016) Nanotechnology in food packaging. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 1. Sustainable Agriculture Reviews. Springer International Publishing, Cham, pp. 151–183

    Chapter  Google Scholar 

  • Labroo P, Cui Y (2014) Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites. Anal Chim Acta 813:90–96. https://doi.org/10.1016/j.aca.2014.01.024

    Article  CAS  PubMed  Google Scholar 

  • Lafferty KD, Harvell CD, Conrad JM et al (2015) Infectious diseases affect marine fisheries and aquaculture economics. Ann Rev Mar Sci 7:471–496

    Article  PubMed  Google Scholar 

  • Lai F, Wissing SA, Muller RH et al (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. Pharm Dev Technol 7:E10–E18

    Article  Google Scholar 

  • Lara HH, Ayala-NĂşnez NV, Turrent LDCI et al (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621

    Article  CAS  Google Scholar 

  • Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16(7):307–321

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Mackeyev Y, Cho M et al (2010) C(60) aminofullerene immobilized on silica as a visible light-activated photocatalyst. Environ Sci Technol 44(24):9488–9495

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Park HJ (2015) Preparation of halloysite nanotubes coated with Eudragit for a controlled release of thyme essential oil. J Appl Polym Sci 132:42771–1–42771–7

    Google Scholar 

  • Letchumanan V, Chan KG, Lee LH (2015a) An insight of traditional plasmid curing in Vibrio species. Front Microbiol 6:735

    PubMed  PubMed Central  Google Scholar 

  • Letchumanan V, Pusparajah P, Tan LTH et al (2015b) Occurrence and antibiotic resistance of Vibrio parahaemolyticus from Shellfish in Selangor. Malaysia. Front Microbiol 6:1417

    PubMed  Google Scholar 

  • Letchumanan V, Yin WF, Lee LH et al (2015c) Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front Microbiol 6:33

    PubMed  PubMed Central  Google Scholar 

  • Li J, Xu Q, Wei X et al (2013) Electrogenerated chemiluminescence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4- Au nanoparticles. J Agric Food Chem 61:1435–1440

    Article  CAS  PubMed  Google Scholar 

  • Li QL, Mahendra S, Lyon DY et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen Y, Hu X et al (2014a) Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. J Memb Sci 471:118–129. https://doi.org/10.1016/j.memsci.2014.08.018

    Article  CAS  Google Scholar 

  • Li X, Robinson SM, Gupta A et al (2014b) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10):10682–10686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liakos IL, Grumezescu AM, Holban AM et al (2016) Polylactic acid—lemongrass essential oil nanocapsules with antimicrobial properties. Pharmaceuticals 9:42

    Article  PubMed Central  CAS  Google Scholar 

  • Lima E, Guerra R, Lara V et al (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent Jn 7(1):11

    Article  CAS  Google Scholar 

  • Liu AX, Cao YJ, Dai M et al (2008) Nanomaterial application in carp aquiculture experiment. Fish Modern 2:24–27. https://doi.org/10.3969/j.issn.1007-9580.2008.02.006 (In Chinese with English abstract)

    Article  Google Scholar 

  • Liu Y, Chen X (2013) High permeability and salt rejection reverse osmosis by a zeolite nano-membrane. Phys Chem Chem Phys 15:6817–6824

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He L, Mustapha A et al (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107(4):1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Lof R, Van Veenendaal M, Jonkman H et al (1995) Band gap, excitons and Coulomb interactions of solid C 60. J Electron Spectros Relat Phenomena 72:83–87

    Article  CAS  Google Scholar 

  • Lofrano G, Libralato G, Alfieri A et al (2016) Metals and tributyltin sediment contamination along the Southeastern Tyrrhenian Sea coast. Chemosphere 144:399–407. https://doi.org/10.1016/j.chemosphere.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  • LĂĽ JM, Wang X, Marin-Muller C et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9(4):325–341

    Article  PubMed  PubMed Central  Google Scholar 

  • Luis AIS, Campos EV, de Oliveira JL et al (2017) Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Rev Aquac 0:1–14 https://doi.org/10.1111/raq.12229

    Article  Google Scholar 

  • Luo Y, Wang Q (2013) Recent advances of chitosan and its derivatives for novel applications in food science. J Food Process Beverag 1:1–13

    Google Scholar 

  • Macak JM, Zlamal M, Krysa J et al (2007) Self organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3(2):300–304

    Article  CAS  PubMed  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–97

    Article  CAS  PubMed  Google Scholar 

  • Malheiros DF, Maciel PO, Videira MN et al (2016) Toxicity of the essential oil of Mentha piperita in Arapaima gigas (pirarucu) and antiparasitic effects on Dawestrema spp. (Monogenea). Aquaculture 455:81–86

    Article  CAS  Google Scholar 

  • Mallmann EJJ, Cunha FA, Castro BN et al (2015) Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo 57(2):165–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MartĂ­nez-cĂłrdova LR, MartĂ­nez Porchas M, CortĂ©s-Jacinto E (2009) Camaronicultura mexicana y mundial:Âż actividad sustentable o industria contaminante? Revista internacional de contaminaciĂłn ambiental 25:181–196

    Google Scholar 

  • Martinez-Porchas M, Martinez-Cordova LR (2012) World aquaculture: environmental impacts and troubleshooting alternatives. Sci World J 2012:ID 389623, 9p

    Article  Google Scholar 

  • Martinez-Porchas M, Martinez-Cordova LR (2012) World aquaculture: environmental impacts and troubleshooting alternatives The Sci World J 2012

    Google Scholar 

  • Mathew AP, Laborie MPG, Oksman K (2009) Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromol 10:1627–1632. https://doi.org/10.1021/bm9002199

    Article  CAS  Google Scholar 

  • McIntyre RA (2012) Common nano-materials and their use in real world applications. Sci Prog 95:1–22

    Article  CAS  PubMed  Google Scholar 

  • Mehrbod P, Motamed N, Tabatabaian M et al (2009) In vitro anti-viral effect of “nanosilver” on influenza virus. DARU 17:88–93

    CAS  Google Scholar 

  • Michigan Nanotechnology Institute for medicine and biological sciences (MNIMBS) (2010) Antimicrob nanoemuls. Available at: http://nano.med.umich.edu/platforms/Antimicrobial-Nanoemulsion.html. Accessed 23 Sept 2016

  • Moghimipour E, Ramezani Z, Handali S (2013) Solid lipid nanoparticles as a delivery system for Zataria multiflora essential oil: formulation and characterization. Cur Drug Deliv 10:151–157

    Article  CAS  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2015) Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol Technol 110:203–213

    Article  CAS  Google Scholar 

  • Mohd Ashraf M, Aklakur R, Shabir A et al (2011) Nanotechnology as a novel tool in fisheries and aquaculture development: a review. Iran J Energy Environ 2(3):258–261

    Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Article  Google Scholar 

  • Mongillo FJ (2007) Nanotechnology 101. Greenwood Press Westport Connecticut/ London

    Google Scholar 

  • Mori Y, Ono T, Miyahira Y et al (2013) Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett 8(1):1–6

    Article  CAS  Google Scholar 

  • Munro LA, Gregory A (2009) Application of network analysis to farmed salmonid movement data from Scotland. J Fish Dis 32:641–644

    Article  CAS  PubMed  Google Scholar 

  • Muralisankar T, Bhavan PS, Radhakrishnan S et al (2014) Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Biol Trace Elem Res 160:56–66

    Article  CAS  PubMed  Google Scholar 

  • Murray AG (2013) Epidemiology of the spread of viral diseases under aquaculture. Curr Opin Virol 3:74–78

    Article  PubMed  Google Scholar 

  • Myhr AI, Myskja BK (2011) Precaution or integrated responsibility approach to nanovaccines in fish farming? A critical appraisal of the unesco precautionary principle. Nanoethics 5:73–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Myint MTZ, Al-Harthi SH, Dutta J (2014) Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes. Desalination 344:236–242. https://doi.org/10.1016/j.desal.2014.03.037

    Article  CAS  Google Scholar 

  • Namdeo M, Bajpai SK (2008) Chitosan-magnetite nanocomposites (CMNs) as magnetic carrier particles for removal of Fe(III) from aqueous solutions. Colloids Surf A Physicochem Eng Aspects 320:161–168

    Article  CAS  Google Scholar 

  • Nangmenyi G, Economy J, Diallo M et al (2009) Nanometallic particles for oligodynamic microbial disinfection. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. Elsevier, Amsterdam, Netherlands, pp 3–15

    Chapter  Google Scholar 

  • Natale F, Hofherr J, Fiore G, Virtanen J (2013) Interactions between aquaculture and fisheries. Marine Policy 38:205–213

    Article  Google Scholar 

  • Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal B 99(1–2): 27–42

    Article  CAS  Google Scholar 

  • Nielsen KN, Am TG, Nydal R (2011) Centre and Periphery of Nano-A Norwegian Context. Nanoethics 5:87–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikonenko VV, Kovalenko AV, Urtenov MK et al (2014) Desalination at over limiting currents: state-of-the-art and perspectives. Desalination 342:85–106. https://doi.org/10.1016/j.desal.2014.01.008

    Article  CAS  Google Scholar 

  • Ninawe AS, Hameed ASS, Selvin J (2016) Advancements in diagnosis and control measures of viral pathogens in aquaculture: an Indian perspective. Aquac Int 25:251–264

    Article  CAS  Google Scholar 

  • Oidtmann B, Stentiford GD (2011) White spot syndrome virus (WSSV) concentrations in crustacean tissues—a review of data relevant to assess the risk associated with commodity trade. Transbound Emerg Dis 58:469–482

    Article  CAS  PubMed  Google Scholar 

  • Omodara MA (2015) Development of appropriate packaging for shelf life extension of smoked fish in a developing economy. Int J Fish Aqua Stud 2:46–50

    Google Scholar 

  • Orge CA, Orfao JJM, Pereira MFR et al (2011) Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Appl Catal B 103(1–2):190–199

    Article  CAS  Google Scholar 

  • Paez-Osuna F (2001) The environmental impact of shrimp aquaculture: causes, effects, and mitigating alternatives. Environ Manag 28:131–140

    Article  CAS  Google Scholar 

  • Pandey S, Mishra SB (2011) Organic-inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J Colloid Interface Sci 361:509–520

    Article  CAS  PubMed  Google Scholar 

  • Parodi TV, Cunha MA, Becker AG et al (2013) Anesthetic activity of the essential oil of Aloysia triphylla and effectiveness in reducing stress during transport of albino and gray strains of silver catfish, Rhamdia quelen. Fish Physiol Biochem 40:323–334

    Article  PubMed  CAS  Google Scholar 

  • Parris N, Cooke PH, Hicks KB (2005) Encapsulation of essential oils in zein nanospherical particles. J Agric Food Chem 53:4788–4792

    Article  CAS  PubMed  Google Scholar 

  • Patel PD (2002) (Bio) sensors for measurement of analytes implicated in food safety: a review. Trends Anal Chem 21:96–115

    Article  CAS  Google Scholar 

  • Pavela R, Maggi F, Ngahang Kamte SL et al (2017) Chemical composition of Cinnamosma madagascariensis (Cannelaceae) essential oil and its larvicidal potential against the filariasis vector Culex quinquefasciatus Say. S Afr J Bot 108:359–363

    Article  CAS  Google Scholar 

  • Pedrazzani AS, Neto AO (2016) The anaesthetic effect of camphor (Cinnamomum camphora), clove (Syzygium aromaticum) and mint (Mentha arvensis) essential oils on clown anemonefish, Amphiprion ocellaris (Cuvier 1830). Aquac Res 47:769–776

    Article  CAS  Google Scholar 

  • Peelman N, Ragaert P, De Meulenaer B et al (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141

    Article  CAS  Google Scholar 

  • Perdikaris C, Nathanailides C, Gouva E et al (2010) Size-relative effectiveness of clove oil as an anaesthetic for rainbow trout (Oncorhynchus mykiss Walbaum, 1792) and Goldfish (Carassius auratus Linnaeus, 1758). Acta Veterinaria Brno 79:481–490

    Article  Google Scholar 

  • Polettini A-E, Fortaner S, Farina M et al (2015) Uptake from water, internal distribution and bioaccumulation of selenium in Scenedesmus obliquus, Unio mancus and Rattus norvegicus: part A. Bull Environ Contam Toxicol 94(1):84–89

    Article  CAS  PubMed  Google Scholar 

  • Pradeep T (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  • Pradhan N, Singh S, Ojha N et al (2015) Facets of nanotechnology as seen in food processing, packaging and preservation industry. Biomed Res Int 2015:1–7. https://doi.org/10.1155/2015/365672

    Article  CAS  Google Scholar 

  • Prakash P, Gnanaprakasam P, Emmanuel R et al (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerfaces 108:255–259

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prashantha Kumar TKM, Mandlimath TR, Sangeetha P et al (2016) Selective removal of nitrate and phosphate from wastewater using nanoscale materials. Nanosci Food Agric 3:199–223

    Article  Google Scholar 

  • Pulavendran S, Chellan R, Asit B (2011) Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice. J Nanobiotechnol 9(1):1

    Article  CAS  Google Scholar 

  • Pulkkinen K, Suomalainen LR, Read AF et al (2010) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc Biol Sci 277(1681):593–600

    Article  CAS  PubMed  Google Scholar 

  • Qu XL, Brame J, Li Q et al (2013) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46:834–843

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Paralikar P, Jogee P et al (2017) Synergistic antimicrobial potential of essential oils in combination with nanoparticles: emerging trends and future perspectives. Int J Pharm 519:67–78

    Article  CAS  PubMed  Google Scholar 

  • Rai VR, Bai JA (2018) Nanotechnology applications in the food industry. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Rajeshkumar S, Ahmed VPI, Parameswaran V et al (2008) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio anguillarum. Fish Shellfish Immunol 25:47–56

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Venkatesan C, Sarathi M et al (2009) Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol 26:429–437

    Article  CAS  PubMed  Google Scholar 

  • Rajitha K, Mukherjee C, Chandran RV (2007) Applications of remote sensing and GIS for sustainable management of shrimp culture in India. Aquacult Eng 36:1–17

    Article  Google Scholar 

  • Ramachandraiah K, Han SG, Chin KB (2015) Nanotechnology in meat processing and packaging: potential applications—a review. Asian Australas J Anim Sci 28:290–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramaiah N (2006) A review on fungal diseases of algae, marine fishes, shrimps and corals. Ind J Mar Sci 35:380–387

    Google Scholar 

  • Ramalingam M, Jabbari E, Ramakrishna S et al (2013) Micro and nanotechnologies in engineering stem cells and tissues, vol 39. Wiley, Hoboken, NJ

    Google Scholar 

  • Ramamoorthy S, Kannaiyan P, Moturi M et al (2013) Antibacterial activity of zinc oxide nanoparticles against Vibrio harveyi. Indian J Fish 107–112

    Google Scholar 

  • Ramezani Z, Zarei M, Raminnejad N (2015) Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control 51:43–48

    Article  CAS  Google Scholar 

  • Ramsden CS, Smith TJ, Shaw BJ et al (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951

    Article  CAS  PubMed  Google Scholar 

  • Ramya VL, Sharma R, Gireesh-Babu P et al (2014) Development of chitosan conjugated DNA vaccine against nodavirus in Macrobrachium rosenbergii (De Man, 1879). J Fish Dis 37:815–824. https://doi.org/10.1111/jfd.12179

    Article  CAS  PubMed  Google Scholar 

  • Ranjan S, Dasgupta N, Chinnappan S et al (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into mechanism of action. Proc Natl Acad Sci India Sect B Biol Sci 87(3):937–943. https://doi.org/10.1007/s40011-015-0673-z

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Srivastava P et al (2016a) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481. https://doi.org/10.1016/j.jphotobiol.2016.06.015

    Article  CAS  Google Scholar 

  • Ranjan S, Nandita D, Lichtfouse E (2016b) Nanoscience in food and agriculture 1, 1st edn. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Rather M, Sharma R, Aklakur M et al (2011a) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fish Aquac J 16:1–5

    Google Scholar 

  • Rather M, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, Ramya V (2011b) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fish Aquacult J 16:1–15

    Google Scholar 

  • Rather MA, Sharma R, Gupta S et al (2013) Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. PLoS ONE 8:e57094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crops Prod 62:250–264

    Article  CAS  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1:P72–P96. https://doi.org/10.1080/19430871003684440

    Article  Google Scholar 

  • Reig CS, Lopez AD, Ramos MH et al (2014) Nanomaterials: a map for their selection in food packaging applications. Pack Technol Sci 27:839–866

    Article  CAS  Google Scholar 

  • Reilly RM (2007) Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med 48(7):1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Chen C, Nagatsu M et al (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  • Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  • Robertson GL (2016) Food Packaging: Principles and Practice, 3rd edn. CRC Press, Boca Raton FL

    Book  Google Scholar 

  • Rocha-Santos TA (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36. https://doi.org/10.1016/j.trac.2014.06.016

    Article  CAS  Google Scholar 

  • RodrĂ­guez-Valencia JA, Crespo D, LĂłpez-Camacho M (2010) La camaronicultura y la sustentabilidad del Golfo de California WWF-MĂ©xico, Programa Golfo de California

    Google Scholar 

  • Romero J, FeijoĂł CG, Navarrete P (2012) Antibiotics in aquaculture—use, abuse and alternatives, health and environment in aquaculture. In: Carvalho E, David GS, Silva RJ (eds). Health and environment in aquaculture, In Tech. https://doi.org/10.5772/28157. Available from: https://www.intechopen.com/books/health-andenvironment-in-aquaculture/antibiotics-in-aquaculture-use-abuseand-alternatives

    Google Scholar 

  • Roohi Z, Imanpoor MR (2015) The efficacy of the oils of spearmint and methyl salicylate as new anesthetics and their effect on glucose levels in common carp (Cyprinus carpio L., 1758) juveniles. Aquaculture 437:327–332

    Article  CAS  Google Scholar 

  • Ross KA, Loyd HWW, Huntimer L et al (2014) Structural and antigenic stability of H5N1 hemagglutinin trimer upon release from polyanhydride nanoparticles. J Biomed mat Res Part a 102(11):4161–4168

    Article  CAS  Google Scholar 

  • Rotruck J, Pope A, Ganther H et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  • Roy K, Mao HQ, Leong KW (1997) DNA-chitosan nanospheres: Transfection efficiency and cellular uptake. Proc Control Release Soc 24:673–674

    Google Scholar 

  • RS/RAE (The royal society and the royal academy of engineering) (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Royal Society Policy Document 19/04

    Google Scholar 

  • Sabbioni E, Polettini A-E, Fortaner S et al (2015) Uptake from water, internal distribution and bioaccumulation of selenium in Scenedesmus obliquus, Unio mancus and Rattus norvegicus: part B. Bull Environ Contam Toxicol 94(1):90–95

    Article  CAS  PubMed  Google Scholar 

  • Saleh M, El-Matbouli M (2015) Rapid detection of cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay. J Virol Methods 217:50–54

    Article  CAS  PubMed  Google Scholar 

  • Saleh M, Soliman H, El-Matbouli M (2015) Gold nanoparticles as a potential tool for diagnosis of fish diseases. Methods Mol Biol 1247:245–252. https://doi.org/10.1007/978-1-4939-2004-4_19

    Article  PubMed  Google Scholar 

  • Saleh M, Soliman H, Haenen O (2011) Antibody-coated gold nanoparticles immunoassay for direct detection of Aeromonas salmonicida in fish tissues. J Fish Dis 34(11):845–852

    Article  CAS  PubMed  Google Scholar 

  • Saleh M, Soliman H, Schachner O et al (2012) Direct detection of unamplified spring viraemia of carp virus RNA using unmodified gold nanoparticles. Dis Aquat Organ 100(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Sanjenbam P, Gopal JV, Kannabiran K (2014) Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. J Mycol Med 24(3): 211–9

    Article  CAS  PubMed  Google Scholar 

  • Sapkota A, Sapkota AR, Kucharski M et al (2008) Aquaculture practices and potential human health risks: current knowledge and future priorities. Environ Int 34:1215–1226

    Article  PubMed  Google Scholar 

  • Sastry RK, Anshul S, Rao NH (2013) Nanotechnology in food processing sector—an assessment of emerging trends. J Food Sci Technol 50:831–841

    Article  CAS  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: Opportunities and challenges. J Nanopart Res 7:331–342

    Article  CAS  Google Scholar 

  • SCCP (Scientific Committee on Consumer Products) (2007) Opinion on safety of nanomaterials in cosmetic products. European Commission SCCP/1147/07

    Google Scholar 

  • Scenihr (2009) Scientific committee on emerging and newly identified health risks. Risk assessment of products of nanotechnologies. European Commission European Commission Health & Consumers DG Brussels

    Google Scholar 

  • SciFinder (2014) SciFinder® database.www.scifinder.cas.org. www.scifinder.cas.org. Accessed 6 Sep 2014

  • Seetang-Nun Y, Jaroenram W, Sriurairatana S et al (2013) Visual detection of white spot syndrome virus using DNA-functionalized gold nanoparticles as probes combined with loop-mediated isothermal amplification. Mol Cell Probes 27(2):71–79

    Article  CAS  PubMed  Google Scholar 

  • Shahryari Z, Goharrizi AS, Azadi M (2010) Experimental study of methylene blue adsorption from aqueous solutions onto carbon nano tubes. Int J Water Res Environ Eng 2:16–28

    Google Scholar 

  • Sheridan C, Kramarsky-Winter E, Sweet M et al (2013) Diseases in coral aquaculture: causes, implications and preventions. Aquaculture 396–399:124–135

    Article  Google Scholar 

  • Shivendu R, Nandita D, Lichtfouse E (2016) Nanoscience in food and agriculture 2, 1st Ed. Springer International Publishing Switzerland

    Google Scholar 

  • Shukla A, Nandita D, Shivendu R et al (2017) Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnol Equip https://doi.org/10.1080/13102818.2017.1335615

    Article  CAS  Google Scholar 

  • SIAD (2014) Scopus indexed article database. www.scopus.com. Accessed 2 Apr 2018

  • Silva LIB, Ferreira FDP, Freitas AC et al (2010) Optical fibre-based micro-analyser for indirect measurements of volatile amines levels in fish. Food Chem 123:806–813. https://doi.org/10.1016/j.foodchem.2010.05.014

    Article  CAS  Google Scholar 

  • Silva LL, Garlet QI, Koakoski G et al (2015) Effects of anesthesia with the essential oil of Ocimum gratissimum L. in parameters of fish stress. Rev Bras Plant Med 17:215–223

    Article  CAS  Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

    Article  CAS  Google Scholar 

  • Simchi A, Tamjid E, Pishbin F et al (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol Biol Med 7:22–39

    Article  CAS  Google Scholar 

  • Siqueira-Lima PS, AraĂşjo AAS, Lucchese AM et al (2014) b-cyclodextrin complex containing Lippia grata leaf essential oil reduces orofacial nociception in mice—evidence of possible involvement of descending inhibitory pain modulation pathway. Basic Clin Pharmacol Toxicol 114:188–196

    Article  CAS  PubMed  Google Scholar 

  • Sireesh BM, Mandal BK, Ranjan S et al (2015) Diastase assisted green synthesis of size- controllable gold nanoparticles. RSC Adv 5(34):26727–26733. https://doi.org/10.1039/c5ra03117f

    Article  CAS  Google Scholar 

  • Sireesh BM, Mandal BK, Shivendu R et al (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258

    Article  CAS  Google Scholar 

  • Siripireddy B, Mandal BK, Shivendu R et al (2017) Nano-zirconia –Evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol. https://doi.org/10.1016/j.jphotobiol.2017.04.004

    Article  CAS  Google Scholar 

  • Sonawane RS, Hegde SG, Dongare MK (2003) Preparation of titanium (VI) oxide thin film photocatalyst by sol–gel dip coating. Mater Chem Phys 3:744–746. https://doi.org/10.1016/S0254-0584(02)00138-4

    Article  Google Scholar 

  • Sonkusre P, Nanduri R, Gupta P et al (2014) Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J Nanomed Nanotechnol 5:194–202

    Article  CAS  Google Scholar 

  • Sotelo-Boyas M, Correa-Pacheco Z, Bautista-Banos S et al (2017a) Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int J Biol Macromol 103:409–414

    Article  CAS  PubMed  Google Scholar 

  • Sotelo-Boyas ME, Correa-Pacheco ZN, Bautista-Banos S et al (2017b) Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT—Food Sci Technol 77:15–20

    Article  CAS  Google Scholar 

  • Sreeprasad TS, Gupta SS, Maliyekkal SM et al (2013) Immobilized graphene-based composite from asphalt: facile synthesis and application in water purification. J Hazard Mater 246:213–220

    Article  PubMed  CAS  Google Scholar 

  • Strømme M, Brohede U, Atluri R et al (2009) Mesoporous silica-based nanomaterials for drug delivery: evaluation of structural properties associated with release rate Wiley Interdisciplinary Reviews. Nanomed Nanobiotechnol 1:140–148

    Article  Google Scholar 

  • Su X-L, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76:4806–4810. https://doi.org/10.1021/ac049442

    Article  CAS  PubMed  Google Scholar 

  • Subramani A, Voutchkov N, Jacangelo JG (2014) Desalination energy minimization using thin film nanocomposite membranes. Desalination 350:35–43

    Article  CAS  Google Scholar 

  • Sugunan A, Warad HC, Thanachayanont C et al (2005) Zinc oxide nanowires on non-epitaxial substrates from colloidal processing, for gas sensing applications. Nanostructured and advanced materials for applications in sensor, optoelectronic and photovoltaic technology. Springer, Berlin, pp 335–338

    Google Scholar 

  • Sumbayev VV, Yasinska IM, Gibbs BF (2013) Biomedical applications of gold nanoparticles. Recent advances in circuits, communications and signal processing. Athens: WSEAS Press: pp. 342–8

    Google Scholar 

  • Swain P, Nayak SK, Sasmal A et al (2014) Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World J Microbiol Biotechnol 30(9):2491–2502

    Article  CAS  PubMed  Google Scholar 

  • Tammina SK, Mandal BK, Ranjan S et al (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. https://doi.org/10.1016/j.jphotobiol.2016.11.017

    Article  CAS  Google Scholar 

  • Tang WW, Zeng GM, Gong JL et al (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468–469:1014–1027. https://doi.org/10.1016/j.scitotenv.2013.09.044

    Article  CAS  PubMed  Google Scholar 

  • Tavares LH, Santeiro RM (2013) Fish farm and water quality management. Acta Scientiarum. Biological Sciences Maringá 35:21–27

    CAS  Google Scholar 

  • Thiruvengadam M, Rajakumar G, Chung I M (2018). Nanotechnology: current uses and future applications in the food industry. 3 Biotech 8:74 https://doi.org/10.1007/s13205-018-1104-7

  • Tomlinson E, Rolland AP (1996) Controllable gene therapy pharmaceutics of non-viral gene delivery systems. J Control Release 1:357–372

    Article  Google Scholar 

  • Tomova A, Ivanova L, Buschmann AH et al (2015) Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environ Microbiol Rep 7:803–809

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2006) Nanoparticulates as drug carriers. Imperial college Press, London

    Book  Google Scholar 

  • Toubanaki DK, Margaroni M, Karagouni E (2015) Nanoparticle-based lateral flow biosensor for visual detection of fish nervous necrosis virus amplification products. Mol Cell Probes 3:158–166

    Article  CAS  Google Scholar 

  • Tsai PP, Schreuder-Gibson H, Gibson P (2002) Different electrostatic methods for making electret filters. J Electrostatics 54:333–341

    Article  CAS  Google Scholar 

  • Tsai SJ, Hofmann M, Hallock M et al (2009) Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environ Sci Technol 43:6017–6023

    Article  CAS  PubMed  Google Scholar 

  • Turek C, Stintzing FC (2013) Stability of essential oils: a review. Comprehensive Reviews. Food Sci Food Saf 12:40–53

    Article  CAS  Google Scholar 

  • Turkoglu EA, Yavuz H, Uzun L et al (2013) The fabrication of nanosensor-based surface plasmon resonance for IgG detection. Artif Cells Nanomed Biotechnol 41:213–221. https://doi.org/10.3109/10731199.2012.716066

    Article  CAS  PubMed  Google Scholar 

  • Umashankari J, Inbakandan D, Ajithkumar TT et al (2012) Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat Biosyst 8(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2007) Nanotechnology white paper. Science Policy Council. EPA 100/B-07/001

    Google Scholar 

  • Vaseeharan B, Ramasamy P, Chen JC (2010) Antibacterial activity of silver nanoparticles (AgNps) synthesized by tea leaf extracts against pathogenic Vibrio harveyi and its protective efficacy on juvenile Feneropenaeus indicus. Lett Appl Microbiol 50(4):352–356

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-González M, Carrillo-Carrion C (2014) Analytical strategies based on quantum dots for heavy metal ions detection. J Biomed Opt 19:101503

    Article  PubMed  CAS  Google Scholar 

  • Vega-Heredia S, Mendoza-Cano F, Sanchez PA (2012) The infectious hypodermal and haematopoietic necrosis virus: a brief review of what we do and do not know. Transbound Emerg Dis 59:95–105

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan P, Iydroose M, Lee SM et al (2014) Synthesis of silver and gold nanoparticles using cashew nut shell iquid and its antibacterial activity against fish pathogens. Indian J Microbiol 54(2):196–202

    Article  CAS  PubMed  Google Scholar 

  • Venkat K (2011) The climate change and economic impacts of food waste in the United States. Int J Food Syst Dyn 2:431–446

    Google Scholar 

  • Vijayan SR, Santhiyagu P, Singamuthu M et al (2014) Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J 2014: ID 938272, 10p

    Google Scholar 

  • Vyom S, Ashutosh K, Alok D (2012) Nanomaterials: exposure, effects and toxicity assessment. Review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences©. The National Academy of Sciences, India. https://doi.org/10.1007/s40011-012-0072-7

    Article  CAS  Google Scholar 

  • Walha K, Amar BR, Quemeneur F et al (2008) Treatment by nanofiltration and reverse osmosis of high salinity drilling water for seafood washing and processing. Desalination 219:231–239

    Article  CAS  Google Scholar 

  • Walker PJ (2004) Disease Emergence and Food Security: Global Impact of Pathogens on Sustainable Aquaculture Production. In: Fish, aquaculture and food security, sustaining fish as a food supply. A conference conducted by the ATSE Crawford Fund Parliament House, Canberra, Australia pp 45–52

    Google Scholar 

  • Wang JH, Zhang XZ, Chen YS et al (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 7:l121–l128. https://doi.org/10.1016/j.chemosphere.2008.07.040

    Article  CAS  Google Scholar 

  • Wang Y, Yan X, Fu L (2013) Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp Carassius auratus gibelio. Int J Nanomedicine 8:4007–4013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang ZY, Lee JHW, Melching CS (2015) Water quality management. In: River dynamics and integrated river management. Springer, Berlin, Heidelberg

    Google Scholar 

  • Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloid Surf B 101:162–170

    Article  CAS  Google Scholar 

  • Warad HC, Ghosh SC, Thanachayanont C et al (2004) Highly luminescent manganese doped ZnS quantum dots for biological labeling. In: Proceedings of international conference on smart materials (SMARTMAT-04) Chiang Mai Thailand

    Google Scholar 

  • Wei LS, Wee W (2013) Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals. Iran J Microbiol 5:147–152

    PubMed  PubMed Central  Google Scholar 

  • Wen JQ, Cai DW, Ding YL et al (2003) Summary report on experiment of Qiangdi nanometer 863 biological assistant growth unit in sea shrimp farming. J Mod Fish Inf 10:12–15 (in Chinses with English abstract)

    Google Scholar 

  • Westerhoff P, Moon H, Minakata D et al (2009) Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities. Water Res 43(16):3992–3998

    Article  CAS  PubMed  Google Scholar 

  • Wu LP, Ficker M, Christensen JB et al (2015) Dendrimers in medicine: therapeutic concepts and pharmaceutical challenges. Bioconjug Chem 26(7):1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Luo Y, Wang Q (2012) Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT—Food Sci Technol 48: 283–290

    Article  CAS  Google Scholar 

  • Xiong W, Sun Y, Zhang T et al (2015) Antibiotics, antibiotic resistance genes and bacterial community composition in fresh water aquaculture environment in China. Microb Ecol 70:425–432

    Article  CAS  PubMed  Google Scholar 

  • Yan WL, Lien HL, Koel BE et al (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Proc Imp 15:63–77

    CAS  Google Scholar 

  • Yang C, Mamouni J, Tang Y et al (2010) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langnluir 20:16013–16019. https://doi.org/10.1021/la103110g

    Article  CAS  Google Scholar 

  • Yang J, Ding YL, Hu BC, Song HQ (2006) Application of nanofiltration membranes in water treatment 32:252

    Google Scholar 

  • Yang SY, Wu JL, Tso CH et al (2012) A novel quantitative immunomagnetic reduction assay for nervous necrosis virus. J Vet Diagn Invest 24(5):911–917

    Article  PubMed  Google Scholar 

  • Yang XL (2003) Drug residue status in our country’s aquatic products and control countermeasures. Aquat Prod Sci Technol Inf 2:68–71 (in Chinese)

    Google Scholar 

  • Yin L, Cheng Y, Espinasse B et al (2011) More than the ions: the effects of silver nanoparticles on lolium multiflorum. Environ Sci Technol 6:2360–2367. https://doi.org/10.1021/es103995x

    Article  CAS  Google Scholar 

  • Yu JC, Tang HY, Yu JG (2002) Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol–gel and reverse micelle methods. J Photochem Photobiol A Chem 3:211–219. https://doi.org/10.1016/S1010-6030(02)00275-7

    Article  Google Scholar 

  • Zahl IH, Samuelsen O, Kiessling A (2011) Anaesthesia of farmed fish: implications for welfare. Fish Physiol Biochem 38:201–218

    Article  PubMed  CAS  Google Scholar 

  • Zeppenfeld CC, Hernández DR, SantinĂłn JJ et al (2016) Essential oil of Aloysia triphylla as feed additive promotes growth of silver catfish (Rhamdia quelen). Aquac Nutr 22:933–940

    Article  CAS  Google Scholar 

  • Zhang HZ, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104(15):3481–3487

    Article  CAS  Google Scholar 

  • Zhang X, Zhang X, Yang B et al (2014a) A new class of red fluorescent organic nanoparticles: noncovalent fabrication and cell imaging applications. ACS Appl Mater Interfaces 6:3600–3606. https://doi.org/10.1021/am4058309

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang X, Yang B et al (2014b) Facile fabrication of AIE based stable cross-linked fluorescent organic nanoparticles for cell imaging. Colloids Surf B 116:739–744. https://doi.org/10.1016/j.colsurfb.2013.12.010

    Article  CAS  Google Scholar 

  • Zhang Y, Niu Y, Luo Y et al (2014c) Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem 142:269–275

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Wang CC, Zakaria R et al (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102(52):10871–10878

    Article  CAS  Google Scholar 

  • Zhao D, Wang J, Sun BH et al (2000) Development and application of TiO2 photocatalysis as antimicrobial agent. J Liaoning Univ (Nat Sci Ed) 2:173–174 (in Chinese with English abstract)

    Google Scholar 

  • Zhao XJ, Zhu ZQ, Wu XH (2005) Progress in high sensitization of hydrophilicity of the surface of TiO2. Mater Rev 11:102–105 (in Chinese with English abstract)

    Google Scholar 

  • Zhou X, Wang Y, Gu Q et al (2009) Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291:78–81

    Article  CAS  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010a) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215

    Article  CAS  PubMed  Google Scholar 

  • Zhu YM, Zhang YL, Xie ZJ et al (2010b) Effects of Cu (II)- exchange silicate nanopanicles (CSN) on ammonia concentration in piggeries and bacterium populations of growing pigs. Chin J Anim Sci 11:58–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Tayel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tayel, A.A., Elsaied, B.E., Diab, A.M. (2019). Nanotechnology for Aquaculture. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_20

Download citation

Publish with us

Policies and ethics