Skip to main content

Recent Trends in Nanomaterials Used in Dairy Industry

  • Chapter
  • First Online:
Nanoscience for Sustainable Agriculture

Abstract

The application of nanotechnology in the dairy industry is going to be a new revolution in the near future. The use of nanostructures in processing products of superior quality and safety and new packaging materials with improved desirable properties are being reported. The properties of bioactive compounds of dairy products can also be improved due to a reduction in the particle size. However, the safety issues about the ill effects of nanotechnology-based dairy foods on human health are of concern. So, there is a need to ensure the safety of nanofoods before commercial utilization. This chapter reviews the various topics like the use of many nano-based delivery systems in dairy products, milk proteins as the perfect natural carriers for nano-encapsulation purposes, nanostructures for the prevention of spoilage causing microorganisms and pathogens in dairy industry. Due to the health concerns, effects of intake of nanoparticles on digestive system, skin, brain, lungs and circulatory system have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Pérez OB, Rodríguez-Herrera R, Rodríguez-Jasso RM, ROJAS R, Aguilar-González MA, Aguilar CN (2017) Whey protein-based edible films: progress and prospects applied chemistry and chemical engineering. In: A. K. Haghi, Ana Cristina Faria Ribeiro, Lionello Pogliani, Devrim Balköse, Francisco Torrens, Omari V. Mukbaniani (eds) Research methodologies in modern chemistry and applied science, vol 5, p 161

    Google Scholar 

  • Arabi F, Imandar M, Negahdary M, Imandar M, Noughabi MT, Akbari-dastjerdi H, Fazilati M (2012) Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann Biol Res 7:3679–3685

    Google Scholar 

  • Bi L, Yang L, Narsimhan G, Bhunia AK, Yao Y (2011) Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J Controlled Release 150:150–156

    Article  CAS  Google Scholar 

  • Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80:R910–R923

    Article  CAS  PubMed  Google Scholar 

  • Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67:833–848

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 03.06(3):30–36

    Google Scholar 

  • Ciosek P, Wróblewski W (2008) Miniaturized electronic tongue with an integrated reference microelectrode for the recognition of milk samples. Talanta 76:548–556

    Article  CAS  PubMed  Google Scholar 

  • Cockburn A et al (2012) Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem Toxicol 50:2224–2242

    Article  CAS  PubMed  Google Scholar 

  • Conte A et al (2013) A novel preservation technique applied to fiordilatte cheese. Innov Food Sci Emerg Technol 19:158–165

    Article  CAS  Google Scholar 

  • Contreras MP, Avula RY, Singh RK (2010) Evaluation of nano zinc (ZnO) for surface enhancement of ATR–FTIR spectra of butter and spread. Food Bioprocess Technol 3:629–635

    Article  CAS  Google Scholar 

  • Costa MJ, Maciel LC, Teixeira JA, Vicente AA, Cerqueira MA (2018) Use of edible films and coatings in cheese preservation: opportunities and challenges. Food Res Int 107:84–92

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Wu J, Li C, Lin L (2017) Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles LWT-Food. Sci Technol 81:233–242

    CAS  Google Scholar 

  • Deng K, Wu Y, Chen Q-Y (2015) BDAZn-GO complex as turn-on selective sensor of BSA. Sens Actuat B Chem 212:512–516

    Article  CAS  Google Scholar 

  • Dias LA, Peres AM, Veloso AC, Reis FS, Vilas-Boas M, Machado AA (2009) An electronic tongue taste evaluation: identification of goat milk adulteration with bovine milk. Sens Actuat B Chem 136:209–217

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD (2013) Nanotechnology of perspectives. role of Nanotechnology in the food industry: a review. Int J Food Sci and Technol 48:1129–1134.

    Google Scholar 

  • Flores-López ML, Cerqueira MA, de Rodríguez DJ, Vicente AA (2016) Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables. Food Eng Rev 8:292–305

    Article  CAS  Google Scholar 

  • Gammariello D, Conte A, Buonocore G, Del Nobile M (2011) Bio-based nanocomposite coating to preserve quality of Fior di latte cheese. J Dairy Sci 94:5298–5304

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani HR, Soltani S (2015) Antibacterial effects of silver nanoparticles on Escherichia coli and Bacillus subtilis. Orient J Chem 31:341–344

    Article  Google Scholar 

  • González-Reza R, García-Betanzos C, Sánchez-Valdes L, Quintanar-Guerrero D, Cornejo-Villegas M, Zambrano-Zaragoza M (2018) The functionalization of nanostructures and their potential applications in edible coatings. Coatings 8:160

    Article  CAS  Google Scholar 

  • Gumiero M, Peressini D, Pizzariello A, Sensidoni A, Iacumin L, Comi G, Toniolo R (2013) Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chem 138:1633–1640

    Article  CAS  PubMed  Google Scholar 

  • Gursoy O, Somervuo P, Alatossava T (2009) Preliminary study of ion mobility based electronic nose MGD-1 for discrimination of hard cheeses. J Food Eng 92:202–207

    Article  Google Scholar 

  • Guy M-M, Tremblay M, Voyer N, Gauthier SF, Pouliot Y (2010) Formation and stability of nanofibers from a milk-derived peptide. J Agric Food Chem 59:720–726

    Article  PubMed  CAS  Google Scholar 

  • Handford CE, Dean M, Spence M, Henchion M, Elliott CT, Campbell K (2015) Awareness and attitudes towards the emerging use of nanotechnology in the agri-food sector. Food Control 57:24–34

    Article  Google Scholar 

  • Hou J, Li H, Wang L, Zhang P, Zhou T, Ding H, Ding L (2016) Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 146:34–40

    Article  CAS  PubMed  Google Scholar 

  • Hruškar M, Major N, Krpan M (2010) Application of a potentiometric sensor array as a technique in sensory analysis. Talanta 81:398–403

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75:R50–R57

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Revol-Junelles A-M, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S (2010) Active food packaging evolution: transformation from micro-to nanotechnology. Crit Rev Food Sci Nutr 50:799–821

    Article  CAS  PubMed  Google Scholar 

  • Incoronato A, Conte A, Buonocore G, Del Nobile M (2011) Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J Dairy Sci 94:1697–1704

    Article  CAS  PubMed  Google Scholar 

  • Jin G-P, Yu B, Yang S-Z, Ma H-H (2011) Extremely sensitive electrode for melamine using a kind of molecularly imprinted nano-porous film. Microchim Acta 174:265

    Article  CAS  Google Scholar 

  • Joung HJ, Choi MJ, Kim JT, Park SH, Park HJ, Shin GH (2016) Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: antioxidant property and in vitro digestion. J Food Sci 81:N745–N753

    Article  CAS  PubMed  Google Scholar 

  • Joye IJ, Davidov-Pardo G, McClements DJ (2014) Nanotechnology for increased micronutrient bioavailability. Trends Food Sci Technol 40:168–182

    Article  CAS  Google Scholar 

  • Kananeh AB, Scharnbeck E, Kück U, Räbiger N (2010) Reduction of milk fouling inside gasketed plate heat exchanger using nano-coatings. Food Bioprod Process 88:349–356

    Article  CAS  Google Scholar 

  • Kanjwal MA, Chronakis IS, Barakat NA (2015) Electrospun NiO, ZnO and composite NiO–ZnO nanofibers/photocatalytic degradation of dairy effluent. Ceram Int 41:12229–12236

    Article  CAS  Google Scholar 

  • Kanjwal MA, Shawabkeh AQ, Alm M, Thomsen P, Barakat NA, Chronakis IS (2016) Hybrid matrices of ZnO nanofibers with silicone for high water flux photocatalytic degradation of dairy effluent. Mater Chem Phys 181:495–500

    Article  CAS  Google Scholar 

  • Khaled F, Ramadan A, Ashoush I (2014) Nanoencapsulation and nanoemulsion of bioactive compounds to enhance their antioxidant activity in food. Int J Food Sci Technol 4:1–22

    Google Scholar 

  • Khan S, Ansari Z, Alothman OY, Fouad H, Ansari S (2017) Application of amine and copper doped magnesium oxide nanoparticles in electrochemical immunosensors for detecting brucella abortus. Nanosci Nanotechnol Lett 9:1656–1664

    Article  Google Scholar 

  • Kora AJ, Arunachalam J (2011) Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microbiol Biotechnol 27:1209–1216

    Article  CAS  Google Scholar 

  • Kumar DL, Sarkar P (2018) Encapsulation of bioactive compounds using nanoemulsions. Environ Chem Lett 16:59–70

    Article  CAS  Google Scholar 

  • Labreche S, Bazzo S, Cade S, Chanie E (2005) Shelf life determination by electronic nose: application to milk. Sens Actuat B Chem 106:199–206

    Article  CAS  Google Scholar 

  • Lee J-H, Kim Y-G, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res 169:888–896

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xing Y, Jiang Y, Ding Y, Li W (2009) Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Int J Food Sci Technol 44:2161–2168

    Article  CAS  Google Scholar 

  • Liu H, Wu D, Zhou K, Wang J, Sun B (2016) Development and applications of molecularly imprinted polymers based on hydrophobic CdSe/ZnS quantum dots for optosensing of Nε-carboxymethyllysine in foods. Food Chem 211:34–40

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He L, Mustapha A, Li H, Hu Z, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Longano D et al (2012) Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem 403:1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Niu H, Zhang X, Cai Y (2011) One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk. Analyst 136:4192–4196

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Ballesta M, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R (2018) Nanoparticles and controlled delivery for bioactive compounds: outlining challenges for new “Smart-foods” for health. Foods 7:72

    Article  PubMed Central  CAS  Google Scholar 

  • Mastromatteo M, Conte A, Lucera A, Saccotelli MA, Buonocore GG, Zambrini AV, Del Nobile MA (2015) Packaging solutions to prolong the shelf life of Fiordilatte cheese: bio-based nanocomposite coating and modified atmosphere packaging LWT-Food. Sci Technol 60:230–237

    CAS  Google Scholar 

  • McClements DJ (2015) Food emulsions: principles, practices, and techniques. CRC Press, Boca Raton

    Book  Google Scholar 

  • Medeiros BGdS, Souza MP, Pinheiro AC, Bourbon AI, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG (2014) Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on ‘Coalho’ cheese shelf life. Food Bioprocess Technol 7:1088–1098

    Article  CAS  Google Scholar 

  • Metak A, Ajaal T (2013) Investigation on polymer based nano-silver as food packaging materials. Int J Biol Food Vet Agric Eng 7:772–777

    Google Scholar 

  • Migliorini FL, Sanfelice RC, Mercante LA, Andre RS, Mattoso LH, Correa DS (2018) Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles. Appl Surf Sci 443:18–23

    Article  CAS  Google Scholar 

  • Mozafari MR (2006) Bioactive entrapment and targeting using nanocarrier technologies: an introduction. In: Mozafari Reza M (ed) nanocarrier technologies. Springer, Berlin, pp 1–16

    Chapter  Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    Article  CAS  Google Scholar 

  • Newman J, O’Riordan D, Jacquier J, O’Sullivan M (2015) Masking of bitterness in dairy protein hydrolysates: comparison of an electronic tongue and a trained sensory panel as means of directing the masking strategy LWT-Food. Sci Technol 63:751–757

    CAS  Google Scholar 

  • Omanović-Mikličanina E, Maksimović M (2016) Nanosensors applications in agriculture and food industry. Bull Chem Technol Bosnia Herzegovina 47:59–70

    Google Scholar 

  • Paixão TR, Bertotti M (2009) Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk adulteration. Sens Actuat B Chem 137:266–273

    Article  CAS  Google Scholar 

  • Pinto RJ, Fernandes SC, Freire CS, Sadocco P, Causio J, Neto CP, Trindade T (2012) Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohyd Res 348:77–83

    Article  CAS  Google Scholar 

  • Poonia A (2017) Potential of milk proteins as nanoencapsulation materials in food industry. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture, vol 5. Springer, Berlin, pp 139–168

    Chapter  Google Scholar 

  • Poonia A, Jha A, Sharma R, Singh HB, Rai AK, Sharma N (2017) Detection of adulteration in milk: a review. Int J Dairy Technol 70:23–42

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Radha K, Thomas A, Sathian C (2014) Application of nano technology in dairy industry: prospects and challenges—a review. Indian J Dairy Sci 67:367–374

    Google Scholar 

  • Ramos OL et al (2017) Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Crit Rev Food Sci Nutr 57:1377–1393

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1:P72–P96

    Article  Google Scholar 

  • Renton A (2006) Welcome to the world of nano foods the observer. Guardian Unlimited 16

    Google Scholar 

  • Restuccia D et al (2010) New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21:1425–1435

    Article  Google Scholar 

  • Rhim J-W (2004) Increase in water vapor barrier property of biopolymer-based edible films and coatings by compositing with lipid materials. Food Sci Biotechnol 13:528–535

    CAS  Google Scholar 

  • Rodríguez-Jasso RM, Rodríguez-Herrera R, Alvarez-Pérez OB (2017) Whey protein-based edible films: progress and prospects. In: A. K. Haghi, Ana Cristina Faria Ribeiro, Lionello Pogliani, Devrim Balköse, Francisco Torrens, Omari V. Mukbaniani (eds) Applied chemistry and chemical engineering. Apple Academic Press, New York, vol 5, pp 181–202

    Google Scholar 

  • Sanabria LAA (2012) Development of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil. Louisiana State University Baton Rouge

    Google Scholar 

  • Scagion VP et al (2016) An electronic tongue based on conducting electrospun nanofibers for detecting tetracycline in milk samples RSC. Advances 6:103740–103746

    CAS  Google Scholar 

  • Sekhon BS (2010) Food nanotechnology—an overview. Nanotechnol Sci Appl 3:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma H, Mutharasan R (2013) Rapid and sensitive immunodetection of Listeria monocytogenes in milk using a novel piezoelectric cantilever sensor. Biosens Bioelectron 45:158–162

    Article  CAS  PubMed  Google Scholar 

  • Shin GH, Kim JT, Park HJ (2015) Recent developments in nanoformulations of lipophilic functional foods. Trends Food Sci Technol 46:144–157

    Article  CAS  Google Scholar 

  • Silva HD, Cerqueira MÂ, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867

    Article  CAS  Google Scholar 

  • Sugumar S, Singh S, Mukherjee A, Chandrasekaran N (2016) Nanoemulsion of orange oil with non ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast. Appl Nanosci 6:113–120

    Article  CAS  Google Scholar 

  • Sung YJ, Suk H-J, Sung HY, Li T, Poo H, Kim M-G (2013) Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosens Bioelectron 43:432–439

    Article  CAS  PubMed  Google Scholar 

  • Thandavan K, Gandhi S, Nesakumar N, Sethuraman S, Rayappan JBB, Krishnan UM (2015) Hydrogen peroxide biosensor utilizing a hybrid nano-interface of iron oxide nanoparticles and carbon nanotubes to assess the quality of milk. Sens Actuat B Chem 215:166–173

    Article  CAS  Google Scholar 

  • Tripathi S, Mehrotra G, Dutta P (2011) Chitosan–silver oxide nanocomposite film: preparation and antimicrobial activity. Bull Mater Sci 34:29–35

    Article  CAS  Google Scholar 

  • Tsagkaris AS, Tzegkas SG, Danezis GP (2018) Nanomaterials in food packaging: state of the art and analysis. J Food Sci Technol 55:1–9

    Article  CAS  Google Scholar 

  • Villar A, Gorritxategi E, Aranzabe E, Fernández S, Otaduy D, Fernández LA (2012) Low-cost visible–near infrared sensor for on-line monitoring of fat and fatty acids content during the manufacturing process of the milk. Food Chem 135:2756–2760

    Article  CAS  PubMed  Google Scholar 

  • Vincent MG, John NP, Narayanan P, Vani C, Murugan S (2014) vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J Appl Pharm Sci 4:41

    CAS  Google Scholar 

  • Vyas SS, Jadhav SV, Majee SB, Shastri JS, Patravale VB (2015) Development of immunochromatographic strip test using fluorescent, micellar silica nanosensors for rapid detection of B. abortus antibodies in milk samples. Biosens Bioelectron 70:254–260

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Xu S, Sun D-W (2010) Application of the electronic nose to the identification of different milk flavorings. Food Res Int 43:255–262

    Article  CAS  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    Article  CAS  Google Scholar 

  • Wu J et al (2015) Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking. Colloids Surf B 127:96–104

    Article  CAS  Google Scholar 

  • Yang H, Qu L, Wimbrow A, Jiang X, Sun Y-P (2007) Enhancing antimicrobial activity of lysozyme against Listeria monocytogenes using immunonanoparticles. J Food Prot 70:1844–1849

    Article  CAS  PubMed  Google Scholar 

  • Yola ML, Eren T, Atar N (2015) A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens Actuat B Chem 210:149–157

    Article  CAS  Google Scholar 

  • Youssef AM, El-Sayed SM, Salama HH, El-Sayed HS, Dufresne A (2015) Evaluation of bionanocomposites as packaging material on properties of soft white cheese during storage period. Carbohydr Polym 132:274–285

    Article  CAS  PubMed  Google Scholar 

  • Zambrano-Zaragoza M, González-Reza R, Mendoza-Muñoz N, Miranda-Linares V, Bernal-Couoh T, Mendoza-Elvira S, Quintanar-Guerrero D (2018) Nanosystems in edible coatings: A novel strategy for food preservation. Int J Mol Sci 19:705

    Article  PubMed Central  CAS  Google Scholar 

  • Zarei M, Jamnejad A, Khajehali E (2014) Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J Microbiol 7:1–4

    Google Scholar 

  • Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Bhopatkar D, Hamaker BR, Campanella OH (2015) Self-assembly of amylose, protein, and lipid as a nanoparticle carrier of hydrophobic small molecules. Nanotechnol Funct Foods Eff Deliv Bioact Ingred 58(16):263–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Poonia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poonia, A. (2019). Recent Trends in Nanomaterials Used in Dairy Industry. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_17

Download citation

Publish with us

Policies and ethics