Skip to main content
  • 568 Accesses

Abstract

This chapter focuses on the problems of local rigidity and infinitesimal rigidity of bar frameworks. These problems have a long and rich history going back at least as far as Cauchy [51]. The main tools in tackling these problems are the rigidity matrix R and the dual rigidity matrix \(\bar{R}\). While R is defined in terms of the underlying graph G and configuration p, \(\bar{R}\) is defined in terms of the complement graph \(\bar{G}\) and Gale matrix Z. Nonetheless, both matrices R and \(\bar{R}\) carry the same information. The chapter concludes with a discussion of generic local rigidity in dimension 2, where the local rigidity problem reduces to a purely combinatorial one depending only on graph G. The literature on the theory of local and infinitesimal rigidities is vast [59, 57, 66, 97, 194]. However, in this chapter, we confine ourselves to discussing only the basic results and the results pertaining to EDMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.Y. Alfakih, Graph rigidity via Euclidean distance matrices. Linear Algebra Appl. 310, 149–165 (2000)

    Article  MathSciNet  Google Scholar 

  2. A.Y. Alfakih, On rigidity and realizability of weighted graphs. Linear Algebra Appl. 325, 57–70 (2001)

    Article  MathSciNet  Google Scholar 

  3. A.Y. Alfakih, On the dual rigidity matrix. Linear Algebra Appl. 428, 962–972 (2008)

    Article  MathSciNet  Google Scholar 

  4. F. Alizadeh, J.A. Haeberly, M.L. Overton, Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8, 746–768 (1998)

    Article  MathSciNet  Google Scholar 

  5. L. Asimow, B. Roth, The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)

    Article  MathSciNet  Google Scholar 

  6. L. Asimow, B. Roth, The rigidity of graphs II. J. Math. Anal. Appl. 68, 171–190 (1979)

    Article  MathSciNet  Google Scholar 

  7. L. Auslander, R.E. MacKenzie, Introduction to Differentiable Manifolds (McGraw-Hill, New York, 1963)

    MATH  Google Scholar 

  8. A.L. Cauchy, sur les polygons et les polyèdres, second mémoire. J. Ecole Polytech. 9, 87–98 (1813)

    Google Scholar 

  9. R. Connelly, Rigidity and energy. Invent. Math. 66, 11–33 (1982)

    Article  MathSciNet  Google Scholar 

  10. R. Connelly, Rigidity, in Handbook of Convex Geometry, ed. by P.M. Gruber, J.M. Wills (North-Holand, Amsterdam, 1993), pp. 223–271

    Chapter  Google Scholar 

  11. G.M. Crippen, T.F. Havel, Distance Geometry and Molecular Conformation (Wiley, New York, 1988)

    MATH  Google Scholar 

  12. H.N. Gabow, H.H. Westermann, Forests, frames and games, in Proceedings of the 20th Annual ACM Symposium on the Theory of Computing, 1988, pp. 407–421

    Google Scholar 

  13. H. Gluck, Almost all simply connected surfaces are rigid, in Geometric Topology. Lecture Notes in Mathematics, vol. 438 (Springer, New York, 1975), pp. 225–239

    Google Scholar 

  14. J. Graver, B. Servatius, H. Servatius, Combinatorial Rigidity (American Mathematical Society, Providence, 1993)

    Book  Google Scholar 

  15. L. Henneberg, Die graphische statik der starren systeme (B. G. Teubner, Leipzig, 1911)

    MATH  Google Scholar 

  16. D.J. Jacobs, B. Hendrickson, An algorithm for the two-dimensional rigidity percolation: the pebble game. J. Comput. Phys. 137, 346–365 (1997)

    Article  MathSciNet  Google Scholar 

  17. G. Laman, On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)

    Article  MathSciNet  Google Scholar 

  18. M. Laurent, Cuts, matrix completion and graph rigidity. Math. Program. 79, 255–283 (1997)

    MathSciNet  MATH  Google Scholar 

  19. A. Lee, I. Streinu, Pebble game algorithms and sparse graphs. Discret. Math. 308, 1425–1437 (2008)

    Article  MathSciNet  Google Scholar 

  20. L. Lovász, Geometric representations of graphs. Unpublished lecture notes, 2016

    Google Scholar 

  21. L. Lovász, Y. Yemini, On generic rigidity in the plane. SIAM J. Algebraic Discret. Methods 3, 91–98 (1982)

    Article  MathSciNet  Google Scholar 

  22. J. Milnor, Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, vol. 61 (Princeton University Press, Princeton, 1968)

    Google Scholar 

  23. A. Recski, A network theory approach to the rigidity of skeletal structures 1: modelling and interconnection. Discret. Appl. Math. 7, 313–324 (1984)

    Article  MathSciNet  Google Scholar 

  24. B. Servatius, H. Servatius, Generic and abstract rigidity, in Rigidity Theory and Applications, ed. by M.F. Thorpe, P.M. Duxbury (Kluwer, New York, 2002)

    MATH  Google Scholar 

  25. A. Wallace, Algebraic approximation of curves. Can. J. Math. 10, 242–278 (1958)

    Article  MathSciNet  Google Scholar 

  26. W. Whiteley, Matroids and rigid structures, in Matroid Applications, Encyclopedia of Mathematics and Its Applications, ed. by N. White, vol. 40 (Cambridge University Press, Cambridge, 1992), pp. 1–53

    Google Scholar 

  27. W. Whiteley, B. Roth, Tensegrity frameworks. Trans. Am. Math. Soc. 265, 419–446 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alfakih, A.Y. (2018). Local and Infinitesimal Rigidities. In: Euclidean Distance Matrices and Their Applications in Rigidity Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-97846-8_9

Download citation

Publish with us

Policies and ethics