Skip to main content

Visual Uncertainty Model of Depth Estimation

  • Chapter
  • First Online:
Book cover Visual Perception for Humanoid Robots

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 38))

  • 462 Accesses

Abstract

This chapter introduces a novel uncertainty model supporting visual depth perception for humanoid robots. The supervised learning approach models the visual uncertainty distribution using ground truth data. The validation and discussion of the attained model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The depth \(\delta _{Th}\) of a point in the scene produces a disparity smaller than a pixel.

  2. 2.

    Since \(G^v\) is a 3\(\,\times \,\)3 matrix, the the singular values and vector coincide with the Eigenvalues and Eigenvectors.

  3. 3.

    Higher orders \(n \ge 6\) were analyzed resulting insignificant deviations.

References

  1. Alvertos, N. 1988. Resolution Limitations and Error Analysis for Stereo Camera Models. In IEEE Conference Southeastcon, 220–224.

    Google Scholar 

  2. Miura, J., and Y. Shirai. 1993. An Uncertainty Model of Stereo Vision and its Application to Vision-Motion Planning of Robot. In International Joint Conference on Artificial Intelligence, 1618–1623.

    Google Scholar 

  3. Sinz, H., J. QuiÃonero, G. Bakir, C. Rasmussen, and M. Franz. 2004. Learning Depth from Stereo. In on PatternRecognition, ed. D.A.G.M. Symposium, 245–252. Berlin: Springer.

    Google Scholar 

  4. Swapna, P., N. Krouglicof, and R. Gosine. 2009. The Question of Accuracy with Geometric Camera Calibration. In Canadian Conference on Electrical and Computer Engineering, 541–546.

    Google Scholar 

  5. Perrollaz, M., A. Spalanzani, and D. Aubert. 2010. Probabilistic Representation of the Uncertainty of Stereo-vision and Application to Obstacle Detection. In IEEE Intelligent Vehicles Symposium, 313–318.

    Google Scholar 

  6. Di Leo, G., C. Liguori, and A. Paolillo. 2011. Covariance Propagation for the Uncertainty Estimation in Stereo Vision. IEEE Transactions on Instrumentation and Measurement 60 (5): 1664–1673.

    Article  Google Scholar 

  7. Asfour, T., K. Regenstein, P. Azad, J. Schröder, A. Bierbaum, N. Vahrenkamp, and R. Dillmann. 2006. ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor Control. In IEEE RAS International Conference on Humanoid Robots, 169–175.

    Google Scholar 

  8. Hartley, R., and A. Zisserman. 2004. Multiple View Geometry in Computer Vision, 2nd ed. Cambridge: Cambridge University Press. ISBN 0521540518.

    Book  Google Scholar 

  9. Pollefeys, M., L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch. 2004. Visual Modeling with a Hand-Held Camera. International Journal of Computer Vision 59 (3): 207–232.

    Article  Google Scholar 

  10. Noskovicova, L., and R. Ravas. 2010. Subpixel Corner Detection for Camera Calibration, 78–80. International Symposium: In MECHATRONIKA.

    Google Scholar 

  11. Okada, K., M. Kojima, S. Tokutsu, T. Maki, Y. Mori, and M. Inaba. 2007. Multi-cue 3D Object Recognition in Knowledge-based Vision-guided Humanoid Robot System. In IEEE-RSJ International Conference on Intelligent Robots and Systems, 3217–3222.

    Google Scholar 

  12. Azad, P., T. Asfour, and R. Dillmann. 2009. Combining Harris Interest Points and the SIFT Descriptor for Fast Scale-Invariant Object Recognition. In IEEE-RSJ International Conference on Intelligent Robots and Systems, 4275–4280.

    Google Scholar 

  13. Bradley, D., and G. Roth. 2007. Adaptive Thresholding using the Integral Image. Journal of Graphics, GPU, and Game Tools 12 (2): 13–21.

    Article  Google Scholar 

  14. KIT. 2011. Karlsruhe Institute of Technology, Computer Science Faculty, Institute for Anthropomatics. The Integrating Vision Toolkit. http://ivt.sourceforge.net.

  15. Duda, R., P. Hart, and D. Stork. 2001. Pattern Classification, 2nd ed. New York: Wiley. ISBN 978-0471056690.

    MATH  Google Scholar 

  16. Scott, D. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. New York: Wiley.

    Google Scholar 

  17. Vollert, M. 2012. Visual ground truth: Modellierung der wahrnehmungsunsicherheit in einem stereokamerasystem. KIT, Karlsruhe Institute of Technology, Computer Science Faculty, Institute for Anthropomatics: Technical Report.

    Google Scholar 

  18. Bates, D.M., and D.G. Watts. 1988. Nonlinear Regression and Its Applications. New York: Wiley. ISBN 978-0471816430.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Israel González Aguirre .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González Aguirre, D.I. (2019). Visual Uncertainty Model of Depth Estimation. In: Visual Perception for Humanoid Robots. Cognitive Systems Monographs, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-97841-3_6

Download citation

Publish with us

Policies and ethics