Green’s Functions for Spherical Resonators

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 523)


Cavity resonators are oscillatory electrodynamic systems, represented by a spatial domain, bounded by either a metal or magnetodielectric surface, contacting with less dense electromagnetic medium. Cavity resonators are classified into the following categories: metallic or screened, dielectric or open, and metalized, i.e. with boundary surfaces partially coated with a metal. Filling of the cavities may be either homogeneous or inhomogeneous, as in metal-dielectric resonators. Along with the term cavity the terms resonant cavity and resonant volume are often used.


Spherical Dielectric Resonators Resonator Walls Extraneous Currents Magnetic-type Waves Wall Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ganapolskii, E.M.: Stochastically resonator for the accumulation of millimeter wave band electromagnetic field energy. Radiophys. Electron. 2, 26–30 (1997) (in Russian)Google Scholar
  2. 2.
    Kharkovsky, S.N., Kirichenko, A.Y., Kogut, A.E.: Solid-State oscillators with whispering-gallery mode dielectric resonators. Microwave Opt. Technol. Lett. 12, 210–213 (1996)Google Scholar
  3. 3.
    Ganapolskii, E.M., Golik, A.V.: A sapphire sphere resonator for the measurement of low dielectric losses in the millimeter-wave range in liquids. Meas. Sci. Technol. (8), 1016–1022 (1997)Google Scholar
  4. 4.
    Kajfez, D., Guillan, P.: Dielectric Resonators. Noble Publishing Corporation, Atlanta GA (1998)Google Scholar
  5. 5.
    Ilchenko, M.E., Trubin, A.A.: Electrodynamics of Dielectric Resonators. Naukova dumka, Kiev (2004) (in Russian)Google Scholar
  6. 6.
    Gil, J.M.: CAD-oriented analysis of cylindrical and spherical dielectric resonators in cavities and MIC environments by means of finite elements. IEEE Trans. Microwave Theory Tech. 53, 2866–2874 (2005)Google Scholar
  7. 7.
    Dercach, V.N., Filippov, Y.F., Plevaco, A.S., et al.: Determination of microwave parameters of isotropic mediums by using an open-optical spherical resonators. Int. J. Infrared Millimeter Waves 25(1), 139–148 (2004)Google Scholar
  8. 8.
    Prokopenko, Y.V., Filippov, Y.F., Shipilova, I.A.: Radially three-layered dielectric resonator with ideally conducting walls. Radiophys. Electron. 11(1), 32–37 (2006) (in Russian)Google Scholar
  9. 9.
    Suvorova, O.A., Filippov, Y.F.: Triple layered ball resonator for measuring dielectric permittivity of substances. Radiophys. Radioastronomy 12(2), 214–222 (2007) (in Russian)Google Scholar
  10. 10.
    Ioppolo, T., Kozhevnikov, M., Stepaniuk, V., Otugen, M.V., Sheverev, V.: Micro-optical force sensor concept based on whispering gallery mode resonators. J. Appl. Opt. 47(16), 3009–3014 (2008)CrossRefGoogle Scholar
  11. 11.
    Ioppolo, T., Ayaz, U.K., Otugen, M.V.: High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres. J. Appl. Phys. 105(1), 013535 (2009)CrossRefGoogle Scholar
  12. 12.
    Kirichenko, A.Y., Prokopenko, Y.V., Suvorova, O.A., Filippov, Y.F.: Radially two-layered sphere as permittivity sensor of surroundings. Radiophys. Radioastronomy 14(3), 275–281 (2009) (in Russian)Google Scholar
  13. 13.
    Leung, K.W., Chow, K.Y.: Theory and experiment of the hemispherical cavity-backed slot antenna. IEEE Trans. Antennas Propag. 48(8), 1234–1241 (1998)CrossRefGoogle Scholar
  14. 14.
    Leung, K.W.: Theory and experiment of a rectangular slot on a sphere. IEEE Trans. Microwave Theory Tech. 46(12), 2117–2123 (1998)CrossRefGoogle Scholar
  15. 15.
    Rothwell, E., Cloud, M.: Natural frequencies of a conducting sphere with a circular aperture. J. EM Waves Appl. 13, 729–755 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Leung, K.W.: Conformal strip excitation of dielectric resonator antenna. IEEE Trans. Antennas Propag. 48(6), 961–967 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    De, A.: Theoretical investigation of resonant modes of shorting post loaded circular microstrip antenna on sphere. J. EM Waves Appl. 14, 1087–1102 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, L.W., Leong, M.S.: Analysis of a passive circular loop antenna radiating in the presence of a layered chiral sphere using method of moment. J. EM Waves Appl. 16(11), 1593–1611 (2002)CrossRefGoogle Scholar
  19. 19.
    Leung, K.W.: Rectangular and zonal slots on a sphere with a backing shell: theory and experiment. IEEE Trans. Antennas Propag. 51(7), 1434–1442 (2003)CrossRefGoogle Scholar
  20. 20.
    Khizhnyak, N.A.: Integral Equations of Macroscopical Electrodynamics. Naukova dumka, Kiev (1986) (in Russian)Google Scholar
  21. 21.
    King, R.W.P., Smith, G.S.: Antennas in Matter. MIT Press, Cambridge, MA (1981)Google Scholar
  22. 22.
    Nesterenko, M.V., Katrich, V.A., Penkin, Y.M., Dakhov, V.M., Berdnik, S.L.: Thin Impedance Vibrators. Theory and Applications. Springer Science + Business Media, New York (2011)CrossRefGoogle Scholar
  23. 23.
    Penkin, Y.M.: Radial electric current excitation of electrodynamical volumes bounded by impedance spherical surfaces. Telecommun. Radio Eng. 52, 26–28 (1998)CrossRefGoogle Scholar
  24. 24.
    Penkin, Y.M.: Solving the problem of exciting a spherical-lager structure by radial currents. Telecommun. Radio Eng. 52, 43–47 (1998)CrossRefGoogle Scholar
  25. 25.
    Penkin, Y.M.: Electromagnetic wave excitation in non-uniformly filled spherical resonant cavities. Telecommun. Radio Eng. 53, 75–80 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PharmacoinformaticsNational University of PharmacyKharkivUkraine
  2. 2.V.N. Karazin Kharkiv National UniversityKharkivUkraine
  3. 3.V.N. Karazin Kharkiv National UniversityKharkivUkraine
  4. 4.V.N. Karazin Kharkiv National UniversityKharkivUkraine
  5. 5.V.N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations