Skip to main content

Monitoring and Fault Diagnosis of Induction Motors Mechanical Faults Using a Modified Auto-regressive Approach

  • Conference paper
  • First Online:
Advanced Control Engineering Methods in Electrical Engineering Systems (ICEECA 2017)

Abstract

Electric motors failure remains a very serious issue in the industrial world. This problem may not only result in the paralysis of the production but may also influence the operator safety. To resolve this problem, several methods have been developed for the monitoring and the diagnosis of faults from their appearances to avoid the industrial process interruption. With this objective in mind, this paper proposes a new diagnosis technique used in the identification of these faults based on stator current Auto-Regressive modeling. The proposed approach presents several advantages compared to the classical stator current spectral analysis using the conventional Periodogram technique. In fact, the proposed approach offers a very good frequency resolution for a very short acquisition time, which is impossible to achieve with the classical technique of the Periodogram. Simulation and experimental tests will be carried out later in this paper to verify the proposed method in bearing faults diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toliyat, H.A., Nandi, S., Choi, S., Meshgin-Kelm, H.: Electric Machines: Modeling, Condition Monitoring and Fault Diagnosis. Taylor & Francis Group Eds, New York (2013)

    Google Scholar 

  2. Bonnett, A.H., Yung, C.: Increased efficiency versus increased reliability. Ind. Appl. Mag. IEEE 14, 29–36 (2008)

    Article  Google Scholar 

  3. Immovilli, F., Bellini, A., Rubini, R., Tassoni, C.: Diagnosis of bearing faults in induction machines by vibration or current signals: a critical comparison. IEEE Trans. Ind. Appl. 46, 1350–1360 (2010)

    Article  Google Scholar 

  4. Seshadrinath, J., Singh, B., Panigrahi, B.K.: Vibration analysis based interturn fault diagnosis in induction machines. IEEE Trans. Ind. Inform. 10(1), 340–350 (2014)

    Article  Google Scholar 

  5. Zarei, J., Tajeddini, A., Karimi, H.R.: Vibration analysis for bearing fault detection and classification using an intelligent filter. J. Mechatron. 24, 151–157 (2014)

    Article  Google Scholar 

  6. Aïmer, A.F., Boudinar, A.H., Bendiabdellah, A.: Use of the short time Fourier transform for induction motor broken bars detection. Int. Rev. Model. Simul. 16(6), 1879–1883 (2013)

    Google Scholar 

  7. Jung, J.H., Lee, J.J., Kwon, B.H.: Online diagnosis of induction motors using MCSA. IEEE Trans. Ind. Electron. 53, 1842–1853 (2006)

    Article  Google Scholar 

  8. Mehala, N., Dahiya, R.: Detection of bearing faults of induction motor using Park’s vector approach. Int. J. Eng. Technol. 2(4), 263–266 (2010)

    Google Scholar 

  9. Silva, J.L.H., Cardoso, A.J.M.: Bearing failures diagnosis in three-phase induction motors by extended Park’s vector approach. In: 31st Annual Conference of IEEE on Industrial Electronics Society, IECON 2005 (2005)

    Google Scholar 

  10. El Bouchikhi, E., Choqueuse, V., Benbouzid, M.E.H.: Current frequency spectral subtraction and its contribution to induction machines’ bearings condition monitoring. IEEE Trans. Energy Convers. 28(1), 135–144 (2012)

    Article  Google Scholar 

  11. Gong, X., Qiao, W.: Bearing fault detection for direct-drive wind turbines via stator current spectrum analysis. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE) (2011)

    Google Scholar 

  12. El Bouchikhi, E., Choqueuse, V., Benbouzid, M.E.H.: Induction machine faults detection using stator current parametric spectral estimation. In: Mechanical Systems and Signal Processing, pp. 447–464. Elsevier (2014)

    Google Scholar 

  13. Ibrahim, A., Badaoui, M.E., Guillet, F., Bonnardot, F.: A new bearing fault detection method in induction machines based on instantaneous power factor. IEEE Trans. Ind. Electron. 55(12), 4252–4259 (2008)

    Article  Google Scholar 

  14. Dzwonkowski, A., Swędrowski, L.: Uncertainty analysis of measuring system for instantaneous power research. Metrol. Measur. Syst. 19(3), 573–582 (2012)

    Article  Google Scholar 

  15. Zagirnyak, M., Mamchur, D., Kalinov, A.: Comparison of induction motor diagnostic methods based on spectra analysis of current and instantaneous power signals. Przegląd Elektrotechniczny 88(12b), 221–224 (2012)

    Google Scholar 

  16. Amirat, Y., Choqueuse, V., Benbouzid, M.E.H., Turri, S.: Hilbert Transform based bearing failure detection in DFIG-based wind turbines. Int. Rev. Electr. Eng. 6(3), 1249–1256 (2011)

    Google Scholar 

  17. Espinosa, A.G., Rosero, J.A., Cusido, J., Romeral, L., Ortega, J.A.: Fault detection by means of Hilbert–Huang Transform of the stator current in a PMSM with demagnetization. IEEE Trans. Energy Convers. 25(2), 312–318 (2010)

    Article  Google Scholar 

  18. Khezzar, A., Kaikaa, M.Y., Oumaamar, M., Boucherma, M., Razik, H.: On the use of slot harmonics as a potential indicator of rotor bar breakage in the induction machine. IEEE Trans. Ind. Electron. 56(11), 4592–4605 (2009)

    Article  Google Scholar 

  19. Stoica, P., Selen, Y.: Model-order selection: a review of information criterion rules. IEEE Signal Process. Mag. 21(4), 36–47 (2004)

    Article  Google Scholar 

  20. Boudinar, A.H., Benouzza, N., Bendiabdellah, A., Khodja, M.: Induction motor bearing fault analysis using root-MUSIC method. IEEE Trans. Ind. Appl. 52(5), 3851–3860 (2016)

    Article  Google Scholar 

  21. Kia, S.H., Henao, H., Capolino, G.-A.: A high resolution frequency estimation method for three-phase induction machine fault detection. IEEE Trans. Ind. Electron. 54(4), 2305–2314 (2007)

    Article  Google Scholar 

  22. Kim, Y.-H., Youn, Y.-W., Hwang, D.-H., Sun, J.-H., Kang, D.-S.: High-resolution parameter estimation method to identify broken rotor bar faults in induction motors. IEEE Trans. Ind. Electron. 60(9), 4103–4117 (2013)

    Article  Google Scholar 

  23. Sahraoui, M., Cardoso, A.J.M., Ghoggal, A.: The use of a modified Prony method to track the broken rotor bar characteristic frequencies and amplitudes in three-phase induction motors. IEEE Trans. Ind. Appl. 51(3), 455–460 (2015)

    Article  Google Scholar 

  24. Munoz, A.R.: Using an autoregressive model in the detection of abnormal characteristics of squirrel cage induction motors. Electric Power Systems Research (2000)

    Google Scholar 

  25. Blödt, M., Granjon, P., Raison, B., Rostaing, G.: Models for bearing damage detection in induction motors using stator current monitoring. IEEE Trans. Ind. Electron. 55, 1813–1823 (2008)

    Article  Google Scholar 

  26. Samaga, R.L., Vittal, K.P., Vikas, J.: Effect of unbalance in voltage supply on the detection of mixed air gap eccentricity in an induction motor by Motor Current Signature Analysis. In: IEEE PES Innovative Smart Grid Technologies—India (2011)

    Google Scholar 

  27. Li, X., Nandi, S.: Performance analysis of a 3-phase induction machine with inclined static eccentricity. In: IEEE International Conference on Electric Machines and Drives, pp. 1606–1613 (2005)

    Google Scholar 

  28. Nandi, S.: A Detailed model of induction machines with saturation extendable for fault analysis. IEEE Trans. Ind. Appl. 40(5), 1302–1309 (2004)

    Article  Google Scholar 

  29. Joksimovic, G.M., Penman, J.: The detection of inter-turn short circuits in the stator windings of operating motors. IEEE Trans. Ind. Electron. 47(5), 1078–1084 (2000)

    Article  Google Scholar 

  30. Manolakis, D.G., Ingle, V.K., Kogon, S.M.: Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modelling, Adaptive Filtering, and Array Processing. Artech House Inc., Norwood (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameur Fethi Aimer .

Editor information

Editors and Affiliations

Appendices

Appendix A. Induction Motor Parameters

Rated power

3 kW

Supply frequency

50 Hz

Rated voltage

380 V

Rated current

7 A

Rated speed

1440 rev/min

Number of rotor bars

28

Number of poles pairs

2

Appendix B. Geometric Parameters of Rolling-Element Bearing “Reference ZZ-6025 Coupling Opposite Side”

Ball diameter Db

7.835 mm

Cage diameter Dc

38.5 mm

Number of balls Nb

9

Contact angle β

0

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aimer, A.F., Boudinar, A.H., El Amine Khodja, M., Benouzza, N., Bendiabdellah, A. (2019). Monitoring and Fault Diagnosis of Induction Motors Mechanical Faults Using a Modified Auto-regressive Approach. In: Chadli, M., Bououden, S., Ziani, S., Zelinka, I. (eds) Advanced Control Engineering Methods in Electrical Engineering Systems. ICEECA 2017. Lecture Notes in Electrical Engineering, vol 522. Springer, Cham. https://doi.org/10.1007/978-3-319-97816-1_30

Download citation

Publish with us

Policies and ethics