Skip to main content

An Adaptive Fuzzy Predictive Control Based on Support Vector Regression

  • Conference paper
  • First Online:
Advanced Control Engineering Methods in Electrical Engineering Systems (ICEECA 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 522))

  • 1051 Accesses

Abstract

In this paper, an adaptive fuzzy Generalized Predictive Control (GPC) is proposed for nonlinear systems via Takagi-Sugeno system based Support Vector Regression (TS-SVR). The adaptive T-S fuzzy model is created using a support vector regression while the online learning procedure is obtained in two steps: first, the antecedent parameters of the TS-SVR are initialized using a k-means clustering and then iteratively adjusted using a back-propagation algorithm. Next, a sequential minimal optimization (SMO) algorithm is used to obtain the consequent parameters. Furthermore, the new TS fuzzy model is integrated into the GPC in order to control nonlinear systems. The performance of the proposed adaptive TS-SVR GPC controller is investigated by controlling the continuous stirred tank reactor (CSTR) system. The proposed TS-SVR GPChas shown good performance and efficiently controlled the nonlinear plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clarke, D.W., Mothadi, C., Tuffs, P.S.C.: Generalized predictive control—part 1. The basic algorithm. Automatica 23, 137–148 (1989)

    Article  Google Scholar 

  2. Clarke, D.W., Mohtadi, C.: Properties of generalized predictive control. Automatica 25(6), 859–875 (1989)

    Article  MathSciNet  Google Scholar 

  3. Camacho, F.E.: Constrained generalized predictive control. IEEE Trans. Autom. Control 38(2), 327–332 (1993)

    Article  MathSciNet  Google Scholar 

  4. Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. Part B 3(1), 28–44 (1973)

    Article  MathSciNet  Google Scholar 

  5. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, Berlin (1993)

    Book  Google Scholar 

  6. Wang, J., Gao, Y., Qiu, J., Ahn, C.K.: Sliding mode control for non-linear systems by Takagi–Sugeno fuzzy model and delta operator approaches. IET Control Theory Appl. 11(8), 1205–1213 (2016)

    Article  MathSciNet  Google Scholar 

  7. Chen, S., Billings, S.: Neural networks for nonlinear dynamic system modelling and identification. Int. J. Control 56, 319–346 (1992)

    Article  MathSciNet  Google Scholar 

  8. Soloway, D., Haley, P.J.: Neural generalized predictive control: a Newton–Raphson algorithm. In: Proceedings of the IEEE International Symposium on Intelligent Control, Dearborn, MI, USA, pp. 277–282 (1996)

    Google Scholar 

  9. Huang, Y.L., Lou, H.H., Gong, J.P., Edgar, T.F.: Fuzzy model predictive control. IEEE Trans. Fuzzy Syst. 8, 665–678 (2000)

    Article  Google Scholar 

  10. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

    Article  Google Scholar 

  11. Mollov, S., Babuška, R., Abonyi, J., Verbruggen, H.B.: Effective optimization for fuzzy model predictive control. IEEE Trans. Fuzzy Syst. 12(5), 661–675 (2004)

    Article  Google Scholar 

  12. Sousa, J.M.D.C., Kaymak, U.: Model prediction control using fuzzy decision functions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 31(1), 54–65 (2001)

    Article  Google Scholar 

  13. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, London (1995)

    Book  Google Scholar 

  14. Scholkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods: Support Vector Learning. The MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  15. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  16. Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Comput. 10(6), 1455–1480 (1998)

    Article  Google Scholar 

  17. Iplikci, S.: Support vector machines based generalized predictive control of chaotic systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(10), 2787–2794 (2006)

    Article  MathSciNet  Google Scholar 

  18. Iplikci, S.: Online trained support vector machines-based generalized predictive control of non-linear systems. Int. J. Adapt. Control Signal Process. 20(10), 599–621 (2006)

    Article  MathSciNet  Google Scholar 

  19. Guo, Z., Guan, X.: Nonlinear generalized predictive control based on online least squares support vector machines. Nonlinear Dyn. 79(2), 1163–1168 (2015)

    Article  MathSciNet  Google Scholar 

  20. Li, L.J., Su, H.Y., Chu, J.: Generalized predictive control with online least squares support vector machines. Acta Autom. Sin. 33(11), 1182–1188 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Chiang, J.H., Hao, P.Y.: Support vector learning mechanism for fuzzy rule-based modeling: a new approach. IEEE Trans. Fuzzy Syst. 12(1), 1–11 (2004)

    Article  Google Scholar 

  22. Juang, C.F., Hsieh, C.D.: TS-fuzzy system-based support vector regression. Fuzzy Sets Syst. 160, 2486–2504 (2009)

    Article  MathSciNet  Google Scholar 

  23. Boulkaibet, I., Belarbi, K., Bououden, S., Marwala, T., Chadli, M.: A new T–S fuzzy model predictive control for nonlinear processes. Expert Syst. Appl. 88, 132–151 (2017)

    Article  Google Scholar 

  24. Boulkaibet, I., Belarbi, K., Bououden, S., Chadli, M., Marwala, T.: An adaptive fuzzy predictive control of nonlinear processes based on multi-kernel least squares support vector regression. Appl. Soft Comput. (2017) (under review)

    Google Scholar 

  25. Juang, C.F., Hsieh, C.D.: A fuzzy system constructed by rule generation and iterative linear SVR for antecedent and consequent parameter optimization. IEEE Trans. Fuzzy Syst. 20(2), 372–384 (2012)

    Article  Google Scholar 

  26. Mercer, J.: Functions of positive and negative type, and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. A 209, 415–446 (1909)

    Article  Google Scholar 

  27. Poggio, T., Mukherjee, S., Rifkin, R., Raklin, A., Verri, A.: Uncertainty in Geometric Computations, pp. 131–141. Kluwer Academic Publishers, Boston (2002)

    Book  Google Scholar 

  28. Vogt, M., Kecman, V.: Active-set methods for support vector machines. In: Support Vector Machines: Theory and Applications. Springer, Berlin, pp 133–158 (2005)

    Chapter  Google Scholar 

  29. Huang, T.M., Kecman, V.: Bias term b in SVMs again. In: Proceedings of the 12th European Symposium on Artificial Neural Networks (ESANN 2004), Bruges, Belgium, pp. 441–448 (2004)

    Google Scholar 

  30. Kecman, V., Huang, T.M., Vogt, M. Iterative single data algorithm for training kernel machines from huge data sets: theory and performance. In: Support Vector Machines: Theory and Applications, pp. 605–605 (2005)

    Chapter  Google Scholar 

  31. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines. Microsoft research technical report MSR-TR-98-14 (1998), p. 256

    Google Scholar 

  32. Kecman, V., Vogt, M., Huang, T.-M.: On the equality of Kernel AdaTron and sequential minimal optimization in classification and regression tasks and alike algorithms for Kernel machines. In: Proceedings of the 11 th European Symposium on Artificial Neural Networks, ESANN 2003, Bruges, Belgium, pp. 215–222 (2003). 256, 258, 269. http://www.support-vector.ws

  33. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. University of California Press, Berkeley, pp. 281–297 (1967)

    Google Scholar 

  34. Oviedo, J.J.E., Vandewalle, J.P., Wertz, V.: Fuzzy Logic, Identification and Predictive Control. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Boulkaibet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boulkaibet, I., Bououden, S., Marwala, T., Twala, B., Ali, A. (2019). An Adaptive Fuzzy Predictive Control Based on Support Vector Regression. In: Chadli, M., Bououden, S., Ziani, S., Zelinka, I. (eds) Advanced Control Engineering Methods in Electrical Engineering Systems. ICEECA 2017. Lecture Notes in Electrical Engineering, vol 522. Springer, Cham. https://doi.org/10.1007/978-3-319-97816-1_14

Download citation

Publish with us

Policies and ethics