Skip to main content

Characterising Two-Sided Quantum Correlations Beyond Entanglement via Metric-Adjusted f–Correlations

  • Conference paper
  • First Online:
Information Geometry and Its Applications (IGAIA IV 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 252))

Included in the following conference series:

Abstract

We introduce an infinite family of quantifiers of quantum correlations beyond entanglement which vanish on both classical-quantum and quantum-classical states and are in one-to-one correspondence with the metric-adjusted skew informations. The ‘quantum f–correlations’ are defined as the maximum metric-adjusted f–correlations between pairs of local observables with the same fixed equispaced spectrum. We show that these quantifiers are entanglement monotones when restricted to pure states of qubit-qudit systems. We also evaluate the quantum f–correlations in closed form for two-qubit systems and discuss their behaviour under local commutativity preserving channels. We finally provide a physical interpretation for the quantifier corresponding to the average of the Wigner–Yanase–Dyson skew informations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell, J.S.: Rev. Mod. Phys. 38(3), 447 (1966)

    Article  MathSciNet  Google Scholar 

  2. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Rev. Mod. Phys. 86, 419 (2014)

    Article  Google Scholar 

  3. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Phys. Rev. Lett. 98(14), 140402 (2007)

    Google Scholar 

  4. Cavalcanti, D., Skrzypczyk, P.: Rep. Prog. Phys. 80(2), 024001 (2016)

    Article  MathSciNet  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81(2), 865 (2009)

    Article  MathSciNet  Google Scholar 

  6. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: Rev. Mod. Phys. 84(4), 1655 (2012)

    Article  Google Scholar 

  7. Quantum Correlations Beyond Entanglement and their Role in Quantum Information Theory. SpringerBriefs in Physics. Springer, Berlin (2015)

    Google Scholar 

  8. Adesso, G., Bromley, T.R., Cianciaruso, M.: J. Phys. A Math. Theor. 49(47), 473001 (2016)

    Google Scholar 

  9. Fanchini, F.F., Soares Pinto, D.O., Adesso, G. (eds.): Lectures on General Quantum Correlations and their Applications. Springer, Berlin (2017)

    MATH  Google Scholar 

  10. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  Google Scholar 

  11. Dowling, J.P., Milburn, G.J.: Philos. Trans. R. Soc. A 361(1809), 1655 (2003)

    Google Scholar 

  12. Piani, M., Horodecki, P., Horodecki, R.: Phys. Rev. Lett. 100(9), 090502 (2008)

    Google Scholar 

  13. Brandão, F.G., Piani, M., Horodecki, P.: Nat. Commun. 6 (2015)

    Google Scholar 

  14. Chuan, T., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Phys. Rev. Lett. 109(7), 070501 (2012)

    Google Scholar 

  15. Streltsov, A., Kampermann, H., Bruß, D.: Phys. Rev. Lett. 108(25), 250501 (2012)

    Google Scholar 

  16. Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Phys. Rev. A 83(3), 032324 (2011)

    Google Scholar 

  17. Madhok, V., Datta, A.: Phys. Rev. A 83(3), 032323 (2011)

    Google Scholar 

  18. Streltsov, A., Lee, S., Adesso, G.: Phys. Rev. Lett. 115, 030505 (2015)

    Google Scholar 

  19. Wilde, M.M.: Proceedings of the royal society of london a: mathematical. Phys. Eng. Sci. 471(2177), 20140941 (2015)

    Google Scholar 

  20. Spehner, D., Orszag, M.: New J. Phys. 15(10), 103001 (2013)

    Article  MathSciNet  Google Scholar 

  21. Spehner, D., Orszag, M.: J. Phys. A Math. Theor. 47(3), 035302 (2013)

    Google Scholar 

  22. Spehner, D.: J. Math. Phys. 55(7), 075211 (2014)

    Google Scholar 

  23. Weedbrook, C., Pirandola, S., Thompson, J., Vedral, V., Gu, M.: New J. Phys. 18(4), 043027 (2016)

    Article  Google Scholar 

  24. Farace, A., De Pasquale, A., Rigovacca, L., Giovannetti, V.: New J. Phys. 16(7), 073010 (2014)

    Article  Google Scholar 

  25. Roga, W., Buono, D., Illuminati, F.: New J. Phys. 17(1), 013031 (2015)

    Article  Google Scholar 

  26. Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Phys. Rev. Lett. 112(21), 210401 (2014)

    Google Scholar 

  27. Piani, M., Narasimhachar, V., Calsamiglia, J.: New J. Phys. 16(11), 113001 (2014)

    Article  Google Scholar 

  28. Piani, M., Gharibian, S., Adesso, G., Calsamiglia, J., Horodecki, P., Winter, A.: Phys. Rev. Lett. 106(22), 220403 (2011)

    Google Scholar 

  29. Gharibian, S., Piani, M., Adesso, G., Calsamiglia, J., Horodecki, P.: Int. J. Quantum Inf. 9(07n08), 1701 (2011)

    Google Scholar 

  30. Piani, M., Adesso, G.: Phys. Rev. A 85(4), 040301 (2012)

    Google Scholar 

  31. Adesso, G., DAmbrosio, V., Nagali, E., Piani, M., Sciarrino, F.: Phys. Rev. Lett. 112(14), 140501 (2014)

    Google Scholar 

  32. Pirandola, S.: Sci. Rep. 4 (2014)

    Google Scholar 

  33. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Nat. Commun. 8 (2017)

    Google Scholar 

  34. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., Synak-Radtke, B., et al.: Phys. Rev. A 71(6), 062307 (2005)

    Google Scholar 

  35. Dillenschneider, R., Lutz, E.: Europhys. Lett. 88(5), 50003 (2009)

    Article  Google Scholar 

  36. Park, J.J., Kim, K.H., Sagawa, T., Kim, S.W.: Phys. Rev. Lett. 111(23), 230402 (2013)

    Google Scholar 

  37. Leggio, B., Bellomo, B., Antezza, M.: Phys. Rev. A 91(1), 012117 (2015)

    Google Scholar 

  38. Correa, L.A., Palao, J.P., Adesso, G., Alonso, D.: Phys. Rev. E 87, 042131 (2013)

    Google Scholar 

  39. Liuzzo-Scorpo, P., Correa, L.A., Schmidt, R., Adesso, G.: Entropy 18(2), 48 (2016)

    Article  Google Scholar 

  40. Grimsmo, A.L.: Phys. Rev. A 87(6), 060302 (2013)

    Google Scholar 

  41. Dakić, B., Vedral, V., Brukner, Č.: Phys. Rev. Lett. 105(19), 190502 (2010)

    Google Scholar 

  42. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Phys. Rev. Lett. 104(8), 080501 (2010)

    Google Scholar 

  43. Paula, F., de Oliveira, T.R., Sarandy, M.: Phys. Rev. A 87(6), 064101 (2013)

    Google Scholar 

  44. Roga, W., Spehner, D., Illuminati, F.: J. Phys. A Math. Theor. 49(23), 235301 (2016)

    Google Scholar 

  45. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88(1), 017901 (2001)

    Google Scholar 

  46. Henderson, L., Vedral, V.: J. Phys. A Math. Gen. 34(35), 6899 (2001)

    Google Scholar 

  47. Luo, S.: Phys. Rev. A 77(2), 022301 (2008)

    Google Scholar 

  48. Giampaolo, S., Streltsov, A., Roga, W., Bruß, D., Illuminati, F.: Phys. Rev. A 87(1), 012313 (2013)

    Google Scholar 

  49. Roga, W., Giampaolo, S., Illuminati, F.: J. Phys. A Math. Theor. 47(36), 365301 (2014)

    Google Scholar 

  50. Seshadreesan, K.P., Wilde, M.M.: Phys. Rev. A 92(4), 042321 (2015)

    Google Scholar 

  51. Streltsov, A., Kampermann, H., Bruß, D.: Phys. Rev. Lett. 106(16), 160401 (2011)

    Google Scholar 

  52. Girolami, D., Tufarelli, T., Adesso, G.: Phys. Rev. Lett. 110(24), 240402 (2013)

    Google Scholar 

  53. Bromley, T.R., Cianciaruso, M., Adesso, G.: Phys. Rev. Lett. 114(21), 210401 (2015)

    Google Scholar 

  54. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Phys. Rev. Lett. 116, 160407 (2016)

    Google Scholar 

  55. Morozova, E.A., Chentsov, N.N.: J. Sov. Math. 56(5), 2648 (1991)

    Google Scholar 

  56. Petz, D.: Linear Algebra Appl. 244, 81 (1996)

    Google Scholar 

  57. Petz, D.: J. Phys. A Math. Gen. 35(4), 929 (2002)

    Google Scholar 

  58. Hansen, F.: Proc. Natl. Acad. Sci. 105(29), 9909 (2008)

    Google Scholar 

  59. Gibilisco, P., Imparato, D., Isola, T.: J. Math. Phys. 48, 072109 (2007)

    Google Scholar 

  60. Gibilisco, P., Imparato, D., Isola, T.: Proc. Am. Math. Soc. 137, 317 (2009)

    Google Scholar 

  61. Gibilisco, P., Hiai, F., Petz, D.: IEEE Trans. Inf. Theory 55(1), 439 (2009)

    Google Scholar 

  62. Davis, R., Delbourgo, R., Jarvis, P.: J. Phys. A Math. Gen. 33(9), 1895 (2000)

    Google Scholar 

  63. Luo, S.: Theor. Math. Phys. 143(2), 681 (2005)

    Google Scholar 

  64. Coecke, B., Fritz, T., Spekkens, R.W.: Inf. Comput. 250, 59 (2016)

    Google Scholar 

  65. Brandão, F.G., Gour, G.: Phys. Rev. Lett. 115(7), 070503 (2015)

    Google Scholar 

  66. Horodecki, M., Oppenheim, J.: Int. J. Mod. Phys. B 27(01n03), 1345019 (2013)

    Article  MathSciNet  Google Scholar 

  67. Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R.: Sci. Rep. 5 (2015)

    Google Scholar 

  68. Hu, X., Fan, H., Zhou, D., Liu, W.M.: Phys. Rev. A 85(3), 032102 (2012)

    Google Scholar 

  69. Streltsov, A., Kampermann, H., Bruß, D.: Phys. Rev. Lett. 107(17), 170502 (2011)

    Google Scholar 

  70. Guo, Y., Hou, J.: J. Phys. A Math. Theor. 46(15), 155301 (2013)

    Google Scholar 

  71. Uhlmann, A.: Rep. Math. Phys. 9(2), 273 (1976)

    Google Scholar 

  72. Wigner, E.P., Yanase, M.M.: Proc. Natl. Acad. Sci. 49, 910 (1963)

    Google Scholar 

  73. Luo, S.: Phys. Rev. A 73(2), 022324 (2006)

    Google Scholar 

  74. Li, X., Li, D., Huang, H., Li, X., Kwek, L.C.: Eur. Phys. J. D 64(1), 147 (2011)

    Article  Google Scholar 

  75. Marvian, I., Spekkens, R.W.: Nat. Commun. 5, 3821 (2014)

    Google Scholar 

  76. Girolami, D.: Phys. Rev. Lett. 113, 170401 (2014)

    Google Scholar 

  77. Zhang, C., Yadin, B., Hou, Z.B., Cao, H., Liu, B.H., Huang, Y.F., Maity, R., Vedral, V., Li, C.F., Guo, G.C., et al.: Phys. Rev. A 96(4), 042327 (2017)

    Google Scholar 

  78. Pires, D.P., Cianciaruso, M., Céleri, L.C., Adesso, G., Soares-Pinto, D.O.: Phys. Rev. X 6, 021031 (2016)

    Google Scholar 

  79. Marvian, I., Spekkens, R.W., Zanardi, P.: Phys. Rev. A 93(5), 052331 (2016)

    Google Scholar 

  80. Gibilisco, P., Isola, T.: J. Math. Anal. Appl. 384(2), 670 (2011)

    Google Scholar 

  81. Audenaert, K., Cai, L., Hansen, F.: Lett. Math. Phys. 85(2–3), 135 (2008)

    Google Scholar 

  82. Kubo, F., Ando, T.: Math. Ann. 246(3), 205 (1980)

    Article  MathSciNet  Google Scholar 

  83. Gibilisco, P., Hansen, F., Isola, T.: Linear Algebra Appl. 430(8–9), 2225 (2009)

    Google Scholar 

  84. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Phys. Rev. Lett. 78(12), 2275 (1997)

    Article  MathSciNet  Google Scholar 

  85. Vidal, G.: J. Mod. Opt. 47(2–3), 355 (2000)

    Google Scholar 

  86. Nielsen, M.A.: Phys. Rev. Lett. 83(2), 436 (1999)

    Article  Google Scholar 

  87. Nielsen, M.A., Vidal, G.: Quantum Inf. Comput. 1(1), 76 (2001)

    Google Scholar 

  88. Nielsen, M.A., Chuang, I.L.: Quantum Computer Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  89. Ando, T.: Linear Algebra Appl. 118, 163 (1989)

    Google Scholar 

  90. Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)

    Article  Google Scholar 

  91. Chitambar, E., Leung, D., Mančinska, L., Ozols, M., Winter, A.: Commun. Math. Phys. 328(1), 303 (2014)

    Article  MathSciNet  Google Scholar 

  92. Åberg, J.: arXiv:quant-ph/0612146 (2006)

  93. Baumgratz, T., Cramer, M., Plenio, M.B.: Phys. Rev. Lett. 113, 140401 (2014)

    Google Scholar 

  94. Yadin, B., Ma, J., Girolami, D., Gu, M., Vedral, V.: Phys. Rev. X 6(4), 041028 (2016)

    Google Scholar 

  95. Streltsov, A., Adesso, G., Plenio, M.B.: Rev. Mod. Phys. 89, 041003 (2017)

    Google Scholar 

  96. Frérot, I., Roscilde, T.: Phys. Rev. B 94(7), 075121 (2016)

    Google Scholar 

  97. Malpetti, D., Roscilde, T.: Phys. Rev. Lett. 117(13), 130401 (2016)

    Google Scholar 

  98. Kubo, R.: Rep. Prog. Phys. 29, 255 (1966)

    Article  Google Scholar 

  99. Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72(22), 3439 (1994)

    Article  MathSciNet  Google Scholar 

  100. Giovannetti, V., Lloyd, S., Maccone, L.: Phys. Rev. Lett. 96(1), 010401 (2006)

    Google Scholar 

  101. Ragy, S., Jarzyna, M., Demkowicz-Dobrzański, R.: Phys. Rev. A 94(5), 052108 (2016)

    Google Scholar 

  102. Tufarelli, T., MacLean, T., Girolami, D., Vasile, R., Adesso, G.: J. Phys. A Math. Theor. 46(27), 275308 (2013)

    Google Scholar 

Download references

Acknowledgements

We thank Thomas Bromley and Tommaso Roscilde for stimulating discussions, as well as Paolo Gibilisco and an anonymous referee for very fruitful comments on a previous version of this manuscript. We acknowledge financial support from the European Research Council (Grant No. 637352 GQCOP), the Foundational Questions Institute (Grant No. FQXi-RFP-1601), and the Agence Nationale de la Recherche (“ArtiQ” project). T.T. acknowledges financial support from the University of Nottingham via a Nottingham Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Adesso .

Editor information

Editors and Affiliations

A   Monotonicity of Eq. (35) Under Local Unital Channels

A   Monotonicity of Eq. (35) Under Local Unital Channels

We will here prove that, if \(\varLambda _A\) is a unital channel on qubit A, then the following inequality holds:

$$\begin{aligned} \widetilde{\mathrm{Q}}^{f}(\varLambda _A(\rho ^{AB}))\le \widetilde{\mathrm{Q}}^{f}(\rho ^{AB}). \end{aligned}$$
(36)

In order to prevent the notation from becoming too cumbersome, in this Appendix we shall leave identity operators implicit wherever convenient: for example in the equation above we defined \(\varLambda _A(\rho ^{AB})\equiv \varLambda _A\otimes \mathbb {I}_B(\rho ^{AB})\).

To begin our proof, let us assume that \(\rho ^{ABC}\) is the optimal dilation of \(\rho ^{AB}\) for the sake of Eq. (35), that is, \(\widetilde{\mathrm{Q}}^{f}(\rho ^{AB})={\mathrm{Q}}^{f}_{AB}(\rho ^{ABC})\), where the subscript AB indicates what subsystems are involved in the calculation of the relevant quantum f–correlations. Consider now any dilation \(\tau ^{ABCD}\) of \(\varLambda _{A}(\rho ^{ABC})\) into a larger space, including a further ancillary system D. We note that \(\tau ^{ABCD}\) is automatically also a dilation of \(\varLambda _{A}(\rho ^{AB})\). Hence, the following inequality holds by definition:

$$\begin{aligned} \widetilde{\mathrm{Q}}^{f}(\varLambda _A(\rho ^{AB}))\le {\mathrm{Q}}^{f}_{AB}(\tau ^{ABCD}), \end{aligned}$$
(37)

Eq. (36) can then be proven by showing that \({\mathrm{Q}}^{f}_{AB}(\tau ^{ABCD})\le {\mathrm{Q}}^{f}_{AB}(\rho ^{ABC})\) for a particular choice of \(\tau ^{ABCD}\).

To proceed, we use the fact that any unital qubit operation can be equivalently written as a random unitary channel [88], i.e.

$$\begin{aligned} \varLambda _{A}(\bullet ) = \sum _{k} q_{k}\, U_{A}^{(k)} \;\bullet \;( U_{A}^{(k)}) ^{\dagger }, \end{aligned}$$
(38)

for an appropriate collection of unitaries \(\{U_{A}^{(k)}\}\) (acting on subsystem A) and probabilities \(\{q_{k}\}\). A suitable dilation of \(\varLambda _{A}(\rho ^{ABC})\) may then be chosen as

(39)
(40)

where is an orthonormal basis on system D. We shall now make use of Eqs. (7) and (28) to calculate the matrix \({M^f_\tau }\) corresponding to \(\tau ^{ABCD}\), relating it to the matrix \(M^f_\rho \equiv M^f\) of \(\rho ^{ABC}\). We will then show that the maximum singular value of \(M^f_\tau \) is smaller than that of \(M^f\).

To do so we infer from Eq. (39) that the nonzero eigenvalues of \(\tau ^{ABCD}\) are the same as those of \(\rho ^{ABC}\), say \(\{p_i\}\), while the associated eigenvectors are

(41)

being the eigenvectors of \(\rho ^{ABC}\). Using the shorthand \(\varvec{\sigma }=\{\sigma _1,\sigma _2,\sigma _3\}\) as in the main text, we can then write

(42)

where we have used the fact that . From the well known correspondence between the special unitary group \(\mathsf{SU}(2)\) and special orthogonal group \(\mathsf{SO}(3)\), it follows that for each k there exists an orthogonal matrix \(R_{k}\) such that \((U_{A}^{(k)})^{\dagger }\varvec{\sigma }_{A} U_{A}^{(k)} = R_{k} \varvec{\sigma }_{A}\). Applying this idea to the last line in Eq. (42) we thus obtain

(43)

where \(S=\sum _{k} q_{k} R_{k}\) is a real matrix such that \(SS^T\le \mathbb I\), since it is a convex combination of orthogonal matrices. Since \(M^f\) and \(M^f_\tau \) are real matrices, their singular values are found as the square roots of the eigenvalues of \(Q=M^f(M^f)^T \) and \(Q_\tau =M^f_\tau (M^f_\tau )^T=SQS^T,\) respectively. Let \(\varvec{v}\) be the normalised eigenvector of \(Q_\tau \) corresponding to its largest eigenvalue. Then

$$\begin{aligned} \lambda _{\max }(Q_\tau )=\varvec{v}^T Q_\tau \varvec{v}=\varvec{v}^T SQS^T\varvec{v}\le \lambda _{\max }(Q)\underbrace{\Vert S^T\varvec{v}\Vert ^2}_{\le 1}\le \lambda _{\max }(Q), \end{aligned}$$
(44)

where we have used that \(\varvec{v}\) is normalised and \(SS^T\le \mathbb I\). This in turn implies that \(s_{\max }(M_\tau ^f)\le s_{\max }(M^f)\), concluding our proof.

The proof can be repeated to show monotonicity under unital channels on qubit B as well. This proves that the quantity \(\widetilde{\mathrm{Q}}^{f}(\rho ^{AB})\) defined in Eq. (35) is a bona fide quantifier of two-sided quantum correlations which obeys requirement (Q3) for any state \(\rho ^{AB}\) of a two-qubit system.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cianciaruso, M., Frérot, I., Tufarelli, T., Adesso, G. (2018). Characterising Two-Sided Quantum Correlations Beyond Entanglement via Metric-Adjusted f–Correlations. In: Ay, N., Gibilisco, P., Matúš, F. (eds) Information Geometry and Its Applications . IGAIA IV 2016. Springer Proceedings in Mathematics & Statistics, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-97798-0_18

Download citation

Publish with us

Policies and ethics