Skip to main content

Information Geometry of Quantum Resources

  • Conference paper
  • First Online:
Information Geometry and Its Applications (IGAIA IV 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 252))

Included in the following conference series:

Abstract

I review recent works showing that information geometry is a useful framework to characterize quantum coherence and entanglement. Quantum systems exhibit peculiar properties which cannot be justified by classical physics, e.g. quantum coherence and quantum correlations. Once confined to thought experiments, they are nowadays created and manipulated by exerting an exquisite experimental control of atoms, molecules and photons. It is important to identify and quantify such quantum features, as they are deemed to be key resources to achieve supraclassical performances in computation and communication protocols. The information geometry viewpoint elucidates the advantage provided by quantum superpositions in phase estimation. Also, it enables to link measures of coherence and entanglement to observables, which can be evaluated in a laboratory by a limited number of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrödinger, E.: The present status of quantum mechanics. Naturwissenschaften 23, 823807 (1935)

    Article  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  3. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007). https://doi.org/10.1103/RevModPhys.79.555

    Article  MathSciNet  MATH  Google Scholar 

  4. Marvian, I.: Symmetry, asymmetry and quantum information. Ph.D. thesis, University of Waterloo (2012)

    Google Scholar 

  5. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. arxiv:1609.02439

  6. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  MathSciNet  MATH  Google Scholar 

  7. Amari, S.: Differential-Geometrical Methods of Statistics. Springer, Berlin (1985)

    Book  Google Scholar 

  8. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  9. Zhang, C., et al.: Detecting metrologically useful asymmetry and entanglement by few local measurements. arxiv:1611.02004

  10. Abragam, A.: The Principles of Nuclear Magnetism. Oxford University Press, Oxford (1978)

    Google Scholar 

  11. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  12. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011). https://doi.org/10.1038/nphoton.2011.35

    Article  Google Scholar 

  13. Tóth, G., Apellaniz, I.: Quantum metrology from a quantum information science perspective. J. Phys. A: Math. Theor. 47, 424006 (2014). https://doi.org/10.1088/1751-8113/47/42/424006

    Article  MathSciNet  MATH  Google Scholar 

  14. Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81 (1996). https://doi.org/10.1016/0024-3795(94)00211-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Petz, D., Ghinea, C.: Introduction to quantum Fisher information. QP–PQ: Quantum Probab. White Noise Anal. 27, 261 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Morozova, E.A., Chentsov, N.N.: Markov invariant geometry on state manifolds. Itogi Nauki i Tehniki 36, 69 (1990). (in Russian)

    MATH  Google Scholar 

  17. Yadin, B., Vedral, V.: A general framework for quantum macroscopicity in terms of coherence. Phys. Rev. A 93, 022122 (2016). https://doi.org/10.1103/PhysRevA.93.022122

    Article  Google Scholar 

  18. Tóth, G., Petz, D.: Extremal properties of the variance and the quantum Fisher information. Phys. Rev. A 87, 032324 (2013). https://doi.org/10.1103/PhysRevA.87.032324

    Article  Google Scholar 

  19. Yu, S.: Quantum Fisher information as the convex roof of variance. arXiv:1302.5311

  20. Gibilisco, P., Imparato, D., Isola, T.: Inequalities for quantum Fisher information. Proc. Am. Math. Soc. 137, 317 (2008)

    Article  MathSciNet  Google Scholar 

  21. Wigner, E.P., Yanase, M.M.: Information content of distributions. PNAS 49, 910–918 (1963)

    Article  MathSciNet  Google Scholar 

  22. Wherl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221 (1978). https://doi.org/10.1103/RevModPhys.50.221

    Article  MathSciNet  Google Scholar 

  23. Paz, J.P., Roncaglia, A.: A quantum gate array can be programmed to evaluate the expectation value of any operator. Phys. Rev. A 68, 052316 (2003). https://doi.org/10.1103/PhysRevA.68.052316

    Article  Google Scholar 

  24. Brun, T.: Measuring polynomial functions of states. Quantum Inf. Comp. 4, 401 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014). https://doi.org/10.1103/PhysRevLett.113.170401

    Article  Google Scholar 

  26. Patel, R.B., Ho, J., Ferreyrol, F., Ralph, T. C., Pryde, G.J.: A quantum Fredkin gate. Sci. Adv. 25(2), e1501531. https://doi.org/10.1126/sciadv.1501531

    Article  Google Scholar 

  27. Moura Alves, C., Jaksch, D.: Multipartite entanglement detection in bosons. Phys. Rev. Lett. 93, 110501 (2004). https://doi.org/10.1103/PhysRevLett.93.110501

    Article  Google Scholar 

  28. Girolami, D., Yadin, B.: Witnessing multipartite entanglement by detecting asymmetry. Entropy 19(3), 124 (2017). https://doi.org/10.3390/e19030124

    Article  Google Scholar 

  29. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009). https://doi.org/10.1016/j.physrep.2009.02.004

    Article  MathSciNet  Google Scholar 

  30. Pezzé, L., Smerzi, A.: Ultrasensitive two-mode interferometry with single-mode number squeezing. Phys. Rev. Lett. 110, 163604 (2013). https://doi.org/10.1103/PhysRevLett.110.163604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Girolami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Girolami, D. (2018). Information Geometry of Quantum Resources. In: Ay, N., Gibilisco, P., Matúš, F. (eds) Information Geometry and Its Applications . IGAIA IV 2016. Springer Proceedings in Mathematics & Statistics, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-97798-0_17

Download citation

Publish with us

Policies and ethics