Skip to main content

Information Geometry with (Para-)Kähler Structures

  • Conference paper
  • First Online:
Information Geometry and Its Applications (IGAIA IV 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 252))

Included in the following conference series:

Abstract

We investigate conditions under which a statistical manifold \(\mathfrak {M}\) (with a Riemannian metric g and a pair of torsion-free conjugate connections \(\nabla , \nabla ^*\)) can be enhanced to a (para-)Kähler structure. Assuming there exists an almost (para-)complex structure L compatible with g on a statistical manifold \(\mathfrak {M}\) (of even dimension), then we show \((\mathfrak {M}, g, L, \nabla )\) is (para-)Kähler if \(\nabla \) and L are Codazzi coupled. Other equivalent characterizations involve a symplectic form \(\omega \equiv g(L \cdot , \cdot )\). In terms of the compatible triple \((g, \omega , L)\), we show that (i) each object in the triple induces a conjugate transformation on \(\nabla \) and becomes an element of an (Abelian) Klein group; (ii) the compatibility of any two objects in the triple with \(\nabla \) leads to the compatible quadruple \((g, \omega , L , \nabla )\) in which any pair of objects are mutually compatible. This is what we call Codazzi-(para-)Kähler manifold [8] which admits the family of torsion-free \(\alpha \)-connections (convex mixture of \(\nabla , \nabla ^*\)) compatible with \((g, \omega , L)\). Finally, we discuss the properties of divergence functions on \(\mathfrak {M}\times \mathfrak {M}\) that lead to Kähler (when \(L=J, J^2=-id\)) and para-Kähler (when \(L=K, K^2= id\)) structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191. AMS, Providence (2000)

    MATH  Google Scholar 

  2. Barndorff-Nielsen, O.E., Jupp, P.E.: Yokes and symplectic structures. J. Stat. Plan. Inference 63(2), 133–146 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  MathSciNet  Google Scholar 

  4. Calabi, E.: Isometric imbedding of complex manifolds. Ann. Math. 58(1), 1–23 (1953)

    Article  MathSciNet  Google Scholar 

  5. Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319(2), 631–661 (1990)

    Article  MathSciNet  Google Scholar 

  6. Donagi, R., Witten, E.: Supersymmetric Yang–Mills theory and integrable systems. Nucl. Phys. B 460(2), 299–334 (1996)

    Article  MathSciNet  Google Scholar 

  7. Eguchi, S.: Geometry of minimum contrast. Hiroshima Math. J. 22(3), 631–47 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Fei, T., Zhang, J.: Interaction of Codazzi coupling and (para)-Kähler geometry. Results in Mathematics (2017). (in print)

    Google Scholar 

  9. Feix, B.: Hyperkähler metrics on cotangent bundles. J. für die reine und angewandte Math. 532, 33–46 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Freed, D.S.: Special Kähler manifolds. Commun. Math. Phys. 203(1), 31–52 (1999)

    Article  Google Scholar 

  11. Furuhata, H.: Hypersurfaces in statistical manifolds. Differ. Geom. Appl. 27(3), 420–429 (2009)

    Article  MathSciNet  Google Scholar 

  12. Gauduchon, P.: Hermitian connections and Dirac operators. Bollettino della Unione Matematica Italiana-B 11(2, Suppl.), 257–288 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Gates, S.J., Hull, C.M., Rocek, M.: Twisted multiplets and new supersymmetric non-linear σ-models. Nucl. Phys. B 248(1), 157–186 (1984)

    Article  Google Scholar 

  14. Gelfand, I., Retakh, V., Shubin, M.: Fedosov manifolds. Adv. Math. 136(1), 104–140 (1998)

    Article  MathSciNet  Google Scholar 

  15. Grigorian, S., Zhang, J.: (Para-)Holomorphic connections for information geometry. Geometric Science of Information. Springer International Publishing, Berlin

    Google Scholar 

  16. Hess, H.: Connections on symplectic manifolds and geometric quantization. Differential Geometrical Methods in Mathematical Physics. Lecture Notes in Mathematics, vol. 836, pp. 153–166. Springer, Berlin (1980)

    Chapter  Google Scholar 

  17. Hitchin, N.J.: The moduli space of complex Lagrangian submanifolds. Surveys in Differential Geometry VII, pp. 327–345. International Press, Somerville (2000)

    Google Scholar 

  18. Ivanov, S., Zamkovoy, S.: Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23(2), 205–234 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kaledin, D.B.: Hyperkähler metrics on total spaces of cotangent bundles. Quaternionic Structures in Mathematics and Physics (Rome, 1999), pp. 195–230. International Press, Somerville (1999)

    Google Scholar 

  20. Kurose, T.: Dual connections and affine geometry. Math. Z. 203(1), 115–121 (1990)

    Article  MathSciNet  Google Scholar 

  21. Lauritzen, S.L.: Statistical manifolds. Differential Geometry in Statistical Inference. IMS Lecture Notes Monograph Series, vol. 10, pp. 163–216. Institute of Mathematical Statistics, Hayward (1987)

    Chapter  Google Scholar 

  22. Leok, M., Zhang, J.: Connecting information geometry and geometric mechanics. Entropy 19(10), 518 (2017)

    Article  MathSciNet  Google Scholar 

  23. Moroianu, A.: Lectures on Kähler Geometry. London Mathematical Society Student Texts, vol. 69. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  24. Noda, T.: Symplectic structures on statistical manifolds. J. Aust. Math. Soc. 90(3), 371–384 (2011)

    Article  MathSciNet  Google Scholar 

  25. Nomizu, K., Sasaki, T.: Affine Differential Geometry: Geometry of Affine Immersions. Cambridge Tracts in Mathematics, vol. 111. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  26. Rocek, M.: Modified Calabi–Yau manifolds with torsion. Essays on Mirror Manifolds, pp. 480–488. International Press, Hong Kong (1992)

    MATH  Google Scholar 

  27. Schwenk-Schellschmidt, A., Simon, U.: Codazzi-equivalent affine connections. Results Math. 56(1–4), 211–229 (2009)

    Article  MathSciNet  Google Scholar 

  28. Schwenk-Schellschmidt, A., Simon, U., Wiehe, M.: Generating higher order Codazzi tensors by functions. TU Fachbereich Mathematik 3 (1998)

    Google Scholar 

  29. Shima, H.: On certain locally flat homogeneous manifolds of solvable Lie groups. Osaka J. Math. 13(2), 213–229 (1976)

    MathSciNet  MATH  Google Scholar 

  30. Simon, U.: Affine differential geometry. Handbook of Differential Geometry, vol. 1, pp. 905–961. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  31. Tao, J., Zhang, J.: Transformations and coupling relations for affine connections. Differ. Geom. Appl. 49, 111–130

    Article  MathSciNet  Google Scholar 

  32. Vaisman, I.: Symplectic curvature tensors. Monatshefte für Math. 100(4), 299–327 (1985)

    Article  MathSciNet  Google Scholar 

  33. Wade, A.: Dirac structures and paracomplex manifolds. Comptes Rendus Math. 338(11), 889–894 (2004)

    Article  MathSciNet  Google Scholar 

  34. Weinstein, A.D.: Symplectic manifolds and their Lagrangian submanifolds. Adv. Math. 6(3), 329–346 (1971)

    Article  MathSciNet  Google Scholar 

  35. Zhang, J.: Divergence function, duality, and convex analysis. Neural Comput. 16(1), 159–195 (2004)

    Article  MathSciNet  Google Scholar 

  36. Zhang, J.: A note on curvature of α-connections of a statistical manifold. Ann. Inst. Stat. Math. 59(1), 161–170 (2007)

    Article  MathSciNet  Google Scholar 

  37. Zhang, J., Li, F.-B.: Symplectic and Kähler structures on statistical manifolds induced from divergence functions. Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085, pp. 595–603. Springer, Berlin (2013)

    Chapter  Google Scholar 

Download references

Acknowledgements

This collaborative research started while the first author (J.Z.) was on sabbatical visit at the Center for Mathematical Sciences and Applications at Harvard University in the Fall of 2014 under the auspices of Prof. S.-T. Yau. The writing of this paper is supported by DARPA/ARO Grant W911NF-16-1-0383 (PI: Jun Zhang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Fei, T. (2018). Information Geometry with (Para-)Kähler Structures. In: Ay, N., Gibilisco, P., Matúš, F. (eds) Information Geometry and Its Applications . IGAIA IV 2016. Springer Proceedings in Mathematics & Statistics, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-97798-0_11

Download citation

Publish with us

Policies and ethics