Skip to main content

Processing of Polymer Blends, Emphasizing: Melt Compounding; Influence of Nanoparticles on Blend Morphology and Rheology; Reactive Processing in Ternary Systems; Morphology–Property Relationships; Performance and Application Challenges; and Opportunities and Future Trends

  • Chapter
  • First Online:
Processing of Polymer-based Nanocomposites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 278))

Abstract

This chapter discusses the structure-properties of immiscible polymer blends, focusing on the effects of compatibilization. It has been discussed that the morphology of immiscible blends governs their final properties and thus end-use applications. Therefore, refining the morphologies via different routes such as reactive or physical compatibilization methods was suggested. Among the possible compatibilization methods, the use of nanoparticles has recently gained popularity as their large surface areas lend them additional reinforcing characteristics. However, it has been shown that localization of nanoparticles within blends plays a determinant role in refining the blend morphologies. In comparison, nanoparticles located at interfaces exhibit the most efficient contribution to both compatibilization and the blend properties, by acting as a physical shield against coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul D, Walsh D, Higgins J (1985) Polymer blends and mixtures. NATO ASI Series E Appl Sci 1

    Google Scholar 

  2. Taguet A, Cassagnau P, Lopez-Cuesta JM (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39:1526–1563

    Article  Google Scholar 

  3. Utracki LA, Weiss RA (1989) Multiphase polymers: blends and ionomers. American Chemical Society

    Google Scholar 

  4. Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc Royal Soc London Ser A Contain Papers Math Phys Char 138:41–48

    Article  ADS  MATH  Google Scholar 

  5. Nienow AW, Edwards M, Harnby N (1997) Mixing in the process industries: Butterworth-Heinemann

    Google Scholar 

  6. Ess JW, Hornsby PR (1986) Characterisation of distributive mixing in thermoplastics compositions. Polym Test 6:205–218

    Article  Google Scholar 

  7. Minale M, Mewis J, Moldenaers P (1998) Study of the morphological hysteresis in immiscible polymer blends. AIChE J 44:943–950

    Article  Google Scholar 

  8. Minale M, Moldenaers P, Mewis J (1997) Effect of shear history on the morphology of immiscible polymer blends. Macromolecules 30:5470–5475

    Article  ADS  Google Scholar 

  9. Janssen JMH, Meijer HEH (1995) Dynamics of liquid-liquid mixing: A 2-zone model. Polym Eng Sci 35:1766–1780

    Article  Google Scholar 

  10. Van Puyvelde P, Velankar S, Mewis J, Moldenaers P, Leuven KU (2002) Effect of marangoni stresses on the deformation and coalescence in compatibilized immiscible polymer blends. Polym Eng Sci 42:1956–1964

    Article  Google Scholar 

  11. Van Puyvelde P, Oommen Z, Koets P, Groeninckx G, Moldenaers P, Leuven KU et al (2003) Effect of reactive compatibilization on the interfacial slip in nylon-6/EPR blends. Polym Eng Sci 43:71–77

    Article  Google Scholar 

  12. Silva J, Machado A, Moldenaers P, Maia J (2010) The effect of interfacial properties on the deformation and relaxation behavior of PMMA/PS blends. J Rheol 54:797–813

    Article  ADS  Google Scholar 

  13. Saleem M, Baker WE (1990) In situ reactive compatibilization in polymer blends: Effects of functional group concentrations. J Appl Polym Sci 39:655–678

    Article  Google Scholar 

  14. Pietrasanta Y, Robin JJ, Torres N, Boutevin B (1999) Reactive compatibilization of HDPE/PET blends by glycidyl methacrylate functionalized polyolefins. Macromol Chem Phys 200:142–149

    Article  Google Scholar 

  15. Sailer C, Handge UA (2007) Melt viscosity, elasticity, and morphology of reactively compatibilized polyamide 6/styrene–acrylonitrile blends in shear and elongation. Macromolecules 40:2019–2028

    Article  ADS  Google Scholar 

  16. Triacca VJ, Ziaee S, Barlow JW, Keskkula H, Paul DR (1991) Reactive compatibilization of blends of nylon 6 and ABS materials. Polymer 32:1401–1413

    Article  Google Scholar 

  17. Huang C-C, Chang F-C (1997) Reactive compatibilization of polymer blends of poly(butylene terephthalate) (PBT) and polyamide-6,6 (PA66): 1. Rheol Therm Prop Polym 38:2135–2141

    Google Scholar 

  18. Maani A, Blais B, Heuzey M-C, Carreau PJ (2012) Rheological and morphological properties of reactively compatibilized thermoplastic olefin (TPO) blends a. J Rheol 56:625–647

    Article  ADS  Google Scholar 

  19. DeLeo C, Walsh K, Velankar S (2011) Effect of compatibilizer concentration and weight fraction on model immiscible blends with interfacial crosslinking. J Rheol 55:713–731

    Article  ADS  Google Scholar 

  20. Huo Y, Groeninckx G, Moldenaers P (2007) Rheology and morphology of polystyrene/polypropylene blends with in situ compatibilization. Rheol Acta 46:507–520

    Article  Google Scholar 

  21. Omonov T, Harrats C, Groeninckx G, Moldenaers P (2007) Anisotropy and instability of the co-continuous phase morphology in uncompatibilized and reactively compatibilized polypropylene/polystyrene blends. Polymer 48:5289–5302

    Article  Google Scholar 

  22. Li J, Ma G, Sheng J (2010) Linear viscoelastic characteristics of in situ compatiblized binary polymer blends with viscoelastic properties of components variable. J Polym Sci Part B Polym Phys 48:1349–1362

    Article  ADS  Google Scholar 

  23. Díaz MF, Barbosa SE, Capiati NJ (2005) Improvement of mechanical properties for PP/PS blends by in situ compatibilization. Polymer 46:6096–6101

    Article  Google Scholar 

  24. Shahbazi K, Aghjeh MR, Abbasi F, Meran MP, Mazidi MM (2012) Rheology, morphology and tensile properties of reactive compatibilized polyethylene/polystyrene blends via Friedel-crafts alkylation reaction. Polym Bull 69:241–259

    Article  Google Scholar 

  25. Wang L, Ma W, Gross RA, McCarthy SP (1998) Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone). Polym Degrad Stab 59:161–168

    Article  Google Scholar 

  26. Harada M, Iida K, Okamoto K, Hayashi H, Hirano K (2008) Reactive compatibilization of biodegradable poly (lactic acid)/poly (ε-caprolactone) blends with reactive processing agents. Polym Eng Sci 48:1359–1368

    Article  Google Scholar 

  27. Semba T, Kitagawa K, Ishiaku US, Hamada H (2006) The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J Appl Polym Sci 101:1816–1825

    Article  Google Scholar 

  28. Kumar M, Mohanty S, Nayak S, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Biores Technol 101:8406–8415

    Article  Google Scholar 

  29. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914

    Article  Google Scholar 

  30. Ma P, Cai X, Zhang Y, Wang S, Dong W, Chen M et al (2014) In-situ compatibilization of poly (lactic acid) and poly (butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym Degrad Stab 102:145–151

    Article  Google Scholar 

  31. Ojijo V, Sinha Ray S, Sadiku R (2013) Toughening of biodegradable polylactide/poly (butylene succinate-co-adipate) blends via in situ reactive compatibilization. ACS Appl Mater Interf 5:4266–4276

    Article  Google Scholar 

  32. Ojijo V, Ray SS (2015) Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 80:1–17

    Article  Google Scholar 

  33. Gu L, Nessim EE, Macosko CW (2018) Reactive compatibilization of poly(lactic acid)/polystyrene blends and its application to preparation of hierarchically porous poly(lactic acid). Polymer 134:104–116

    Article  Google Scholar 

  34. Kim S-J, Shin B-S, Hong J-L, Cho W-J, Ha C-S (2001) Reactive compatibilization of the PBT/EVA blend by maleic anhydride. Polymer 42:4073–4080

    Article  Google Scholar 

  35. Van Puyvelde P, Moldenaers P (2005) Rheology and morphology development in immiscible polymer blends. Rheol Rev 2005:101

    Google Scholar 

  36. Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interf Sci 6:457–463

    Article  Google Scholar 

  37. Sundararaj U, Macosko C (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657

    Article  ADS  Google Scholar 

  38. Tao F, Auhl D, Baudouin A-C, Stadler FJ, Bailly C (2013) Influence of multiwall carbon nanotubes trapped at the interface of an immiscible polymer blend on interfacial tension. Macromol Chem Phys 214:350–360

    Article  Google Scholar 

  39. Ray SS, Bousmina M, Maazouz A (2006) Morphology and properties of organoclay modified polycarbonate/poly(methyl methacrylate) blend. Polym Eng Sci 46:1121–1129

    Article  Google Scholar 

  40. Salehiyan R, Song HY, Choi WJ, Hyun K (2015) Characterization of effects of silica nanoparticles on (80/20) PP/PS Blends via nonlinear rheological properties from fourier transform rheology. Macromolecules 48:4669–4679

    Article  ADS  Google Scholar 

  41. Elias L, Fenouillot F, Majeste JC, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48:6029–6040

    Article  Google Scholar 

  42. Sinha Ray S, Pouliot S, Bousmina M, Utracki LA (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 45:8403–8413

    Article  Google Scholar 

  43. Sinha Ray S, Bousmina M (2005) Compatibilization efficiency of organoclay in an immiscible polycarbonate/poly (methyl methacrylate) blend. Macromol Rapid Commun 26:450–455

    Article  Google Scholar 

  44. Fenouillot F, Cassagnau P, Majesté JC (2009) Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50:1333–1350

    Article  Google Scholar 

  45. Zhu Y, Ma H-Y, Tong L-F, Fang Z-P (2008) Cutting effect” of organoclay platelets in compatibilizing immiscible polypropylene/polystyrene blends. J Zhejiang Univ Sci A 9:1614–1620

    Article  Google Scholar 

  46. Kelnar I, Kratochvíl J, Kaprálková L, Zhigunov A, Nevoralová M (2017) Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. J Mech Behav Biomed Mater 71:271–278

    Article  Google Scholar 

  47. Kelnar I, Kratochvíl J, Kaprálková L, Špitálsky Z, Ujčič M, Zhigunov A, et al (2017) Effect of graphene oxide on structure and properties of impact modified polyamide 6. Polym Plastics Technol Eng null–null

    Google Scholar 

  48. Yousfi M, Livi S, Dumas A, Crépin-Leblond J, Greenhill-Hooper M, Duchet-Rumeau J (2014) Compatibilization of polypropylene/polyamide 6 blends using new synthetic nanosized talc fillers: morphology, thermal, and mechanical properties. J Appl Polym Sci 131: n/a

    Google Scholar 

  49. Salehiyan R, Song HY, Kim M, Choi WJ, Hyun K (2016) Morphological evaluation of PP/PS blends filled with different types of clays by nonlinear rheological analysis. Macromolecules 49:3148–3160

    Article  ADS  Google Scholar 

  50. Salehiyan R, Yoo Y, Choi WJ, Hyun K (2014) Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from ft-rheology. Macromolecules 47:4066–4076

    Article  ADS  Google Scholar 

  51. Thareja P, Moritz K, Velankar SS (2010) Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: particles can increase or decrease drop size. Rheol Acta 49:285–298

    Article  Google Scholar 

  52. Zou Z-M, Sun Z-Y, An L-J (2014) Effect of fumed silica nanoparticles on the morphology and rheology of immiscible polymer blends. Rheol Acta 53:43–53

    Article  Google Scholar 

  53. Nagarkar S, Velankar SS (2013) Rheology and morphology of model immiscible polymer blends with monodisperse spherical particles at the interface. J Rheol 57:901–926

    Article  ADS  Google Scholar 

  54. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271

    Article  Google Scholar 

  55. Wu S, Dekker M (1982) Polymer interface and adhesion

    Google Scholar 

  56. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  Google Scholar 

  57. Good RJ, Girifalco LA, Kraus G (1958) A theory for estimation of interfacial energies. II. Application to surface thermodynamics of teflon and graphite. J Phys Chem 62:1418–1421

    Article  Google Scholar 

  58. Baudouin A-C, Bailly C, Devaux J (2010) Interface localization of carbon nanotubes in blends of two copolymers. Polym Degrad Stab 95:389–398

    Article  Google Scholar 

  59. Baudouin A-C, Devaux J, Bailly C (2010) Localization of carbon nanotubes at the interface in blends of polyamide and ethylene–acrylate copolymer. Polymer 51:1341–1354

    Article  Google Scholar 

  60. Liebscher M, Blais M-O, Pötschke P, Heinrich G (2013) A morphological study on the dispersion and selective localization behavior of graphene nanoplatelets in immiscible polymer blends of PC and SAN. Polymer 54:5875–5882

    Article  Google Scholar 

  61. Chen J, Shen Y, J-h Yang, Zhang N, Huang T, Wang Y et al (2013) Trapping carbon nanotubes at the interface of a polymer blend through adding graphene oxide: a facile strategy to reduce electrical resistivity. J Mater Chem C 1:7808–7811

    Article  Google Scholar 

  62. Ginzburg VV (2005) Influence of nanoparticles on miscibility of polymer blends. Simple Theor Macromol 38:2362–2367

    Article  Google Scholar 

  63. Göldel A, Marmur A, Kasaliwal GR, Pötschke P, Heinrich G (2011) Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules 44:6094–6102

    Article  ADS  Google Scholar 

  64. Krasovitski B, Marmur A (2005) Particle adhesion to drops. J Adhesion 81:869–880

    Article  Google Scholar 

  65. Taylor G (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond Ser A 146:501–523

    Article  ADS  Google Scholar 

  66. Müller-Fischer N, Tobler P, Dressler M, Fischer P, Windhab EJ (2008) Single bubble deformation and breakup in simple shear flow. Exp Fluids 45:917–926

    Article  Google Scholar 

  67. Maffettone PL, Minale M (1998) Equation of change for ellipsoidal drops in viscous flow. J Nonnewton Fluid Mech 78:227–241

    Article  MATH  Google Scholar 

  68. Wolf B, Frith WJ, Norton IT (2001) Influence of gelation on particle shape in sheared biopolymer blends. J Rheol 45:1141–1157

    Article  ADS  Google Scholar 

  69. Guido S, Villone M (1998) Three-dimensional shape of a drop under simple shear flow. J Rheol 42:395–415

    Article  ADS  Google Scholar 

  70. Guido S, Villone M (1999) Measurement of interfacial tension by drop retraction analysis. J Colloid Interf Sci 209:247–250

    Article  ADS  Google Scholar 

  71. Gooneie A, Nazockdast H, Shahsavan F (2015) Effect of selective localization of carbon nanotubes in PA6 dispersed phase of PP/PA6 blends on the morphology evolution with time, part 1: Droplet deformation under simple shear flows. Polym Eng Sci 55:1504–1519

    Article  Google Scholar 

  72. López-Barrón CR, Macosko CW (2014) Rheology of compatibilized immiscible blends with droplet-matrix and cocontinuous morphologies during coarsening. J Rheol 58:1935–1953

    Article  ADS  Google Scholar 

  73. Huitric J, Ville J, Médéric P, Moan M, Aubry T (2009) Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: Effect of clay weight fraction. J Rheol 53:1101–1119

    Article  ADS  Google Scholar 

  74. Li R, Yu W, Zhou C (2006) Rheological characterization of droplet-matrix versus co-continuous morphology. J Macromol Sci Part B 45:889–898

    Article  ADS  Google Scholar 

  75. Ezati P, Ghasemi E, Karabi M, Azizi H (2008) Rheological behaviour of PP/EPDM blend: the effect of compatibilization

    Google Scholar 

  76. Sangroniz L, Moncerrate MA, De Amicis VA, Palacios JK, Fernández M, Santamaria A et al (2015) The outstanding ability of nanosilica to stabilize dispersions of Nylon 6 droplets in a polypropylene matrix. J Polym Sci Part B Polym Phys 53:1567–1579

    Article  ADS  Google Scholar 

  77. Sangroniz L, Palacios JK, Fernández M, Eguiazabal JI, Santamaria A, Müller AJ (2016) Linear and non-linear rheological behavior of polypropylene/polyamide blends modified with a compatibilizer agent and nanosilica and its relationship with the morphology. Eur Polym J 83:10–21

    Article  Google Scholar 

  78. Roman C, García-Morales M, Gupta J, McNally T (2017) On the phase affinity of multi-walled carbon nanotubes in PMMA: LDPE immiscible polymer blends. Polymer 118:1–11

    Article  Google Scholar 

  79. Choi SJ, Schowalter W (1975) Rheological properties of nondilute suspensions of deformable particles. Phys Fluids 18:420–427

    Article  ADS  MATH  Google Scholar 

  80. Gramespacher H, Meissner J (1992) Interfacial tension between polymer melts measured by shear oscillations of their blends. J Rheol 36:1127–1141

    Article  ADS  Google Scholar 

  81. Palierne J (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  Google Scholar 

  82. Wu D, Zhang Y, Zhang M, Zhou W (2008) Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur Polym J 44:2171–2183

    Article  Google Scholar 

  83. Labaume I, Médéric P, Huitric J, Aubry T (2013) Comparative study of interphase viscoelastic properties in polyethylene/polyamide blends compatibilized with clay nanoparticles or with a graft copolymer. J Rheol 57:377–392

    Article  ADS  Google Scholar 

  84. Elias L, Fenouillot F, Majesté J-C, Alcouffe P, Cassagnau P (2008) Immiscible polymer blends stabilized with nano-silica particles: Rheology and effective interfacial tension. Polymer 49:4378–4385

    Article  Google Scholar 

  85. Maani A, Heuzey M-C, Carreau PJ (2011) Coalescence in thermoplastic olefin (TPO) blends under shear flow. Rheol Acta 50:881–895

    Article  Google Scholar 

  86. Graebling D, Muller R, Palierne J (1993) Linear viscoelasticity of incompatible polymer blends in the melt in relation with interfacial properties. Le Journal de Physique IV. 3: C7-1525–C7-34

    Google Scholar 

  87. Macaúbas PHP, Demarquette NR (2001) Morphologies and interfacial tensions of immiscible polypropylene/polystyrene blends modified with triblock copolymers. Polymer 42:2543–2554

    Article  Google Scholar 

  88. Souza AMC, Demarquette NR (2002) Influence of coalescence and interfacial tension on the morphology of PP/HDPE compatibilized blends. Polymer 43:3959–3967

    Article  Google Scholar 

  89. Demarquette NR, De Souza AMC, Palmer G, Macaubas PHP (2003) Comparison between five experimental methods to evaluate interfacial tension between molten polymers. Polym Eng Sci 43:670–683

    Article  Google Scholar 

  90. Sung YT, Han MS, Hyun JC, Kim WN, Lee HS (2003) Rheological properties and interfacial tension of polypropylene–poly(styrene-co-acrylonitrile) blend containing compatibilizer. Polymer 44:1681–1687

    Article  Google Scholar 

  91. López-Barrón CR, Macosko CW (2012) Rheological and morphological study of cocontinuous polymer blends during coarsening. J Rheol 56:1315–1334

    Article  ADS  Google Scholar 

  92. Z-y Gui, H-r Wang (2012) Gao Y, Lu C, Cheng S-j. Morphology and melt rheology of biodegradable poly (lactic acid)/poly (butylene succinate adipate) blends: effect of blend compositions. Iran Polym J 21:81–89

    Article  Google Scholar 

  93. Isayev AI (2016) Encyclopedia of polymer blends, volume 3 structure. Wiley

    Google Scholar 

  94. Bai J, Goodridge RD, Hague RJM, Okamoto M (2017) Processing and characterization of a polylactic acid/nanoclay composite for laser sintering. Polym Compos 38:2570–2576

    Article  Google Scholar 

  95. Bell JR, Chang K, López-Barrón CR, Macosko CW, Morse DC (2010) Annealing of cocontinuous polymer blends: effect of block copolymer molecular weight and architecture. Macromolecules 43:5024–5032

    Article  ADS  Google Scholar 

  96. Trifkovic M, Hedegaard A, Huston K, Sheikhzadeh M, Macosko CW (2012) Porous films via PE/PEO cocontinuous blends. Macromolecules 45:6036–6044

    Article  ADS  Google Scholar 

  97. Sengers WGF, Sengupta P, Noordermeer JWM, Picken SJ, Gotsis AD (2004) Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties. Polymer 45:8881–8891

    Article  Google Scholar 

  98. Yu W, Zhou W, Zhou C (2010) Linear viscoelasticity of polymer blends with co-continuous morphology. Polymer 51:2091–2098

    Article  Google Scholar 

  99. Veenstra H, Verkooijen PCJ, van Lent BJJ, van Dam J, de Boer AP, Nijhof APHJ (2000) On the mechanical properties of co-continuous polymer blends: experimental and modelling. Polymer 41:1817–1826

    Article  Google Scholar 

  100. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH et al (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753

    Article  Google Scholar 

  101. Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newtonian Fluid Mech 107:51–65

    Article  MATH  Google Scholar 

  102. Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52:1427–1458

    Article  ADS  Google Scholar 

  103. Ewoldt RH (2013) Defining nonlinear rheological material functions for oscillatory shear. J Rheol 57:177–195

    Article  ADS  Google Scholar 

  104. Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57–63

    Article  Google Scholar 

  105. Payne AR (1962) The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II. J Appl Polym Sci 6:368–372

    Article  Google Scholar 

  106. Salehiyan R, Hyun K (2013) Effect of organoclay on non-linear rheological properties of poly (lactic acid)/poly (caprolactone) blends. Korean J Chem Eng 30:1013–1022

    Article  Google Scholar 

  107. Salehiyan R, Ray S, Bandyopadhyay J, Ojijo V (2017) The distribution of nanoclay particles at the interface and their influence on the microstructure development and rheological properties of reactively processed biodegradable polylactide/poly(butylene succinate) blend nanocomposites. Polymers 9:350

    Article  Google Scholar 

  108. Wilhelm M (2002) Fourier-transform rheology. Macromol Mater and Eng 287:83–105

    Article  Google Scholar 

  109. Wilhelm M, Maring D, Spiess H-W (1998) Fourier-transform rheology. Rheol Acta 37:399–405

    Article  Google Scholar 

  110. Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38:349–356

    Article  Google Scholar 

  111. Carotenuto C, Grosso M, Maffettone PL (2008) Fourier transform rheology of dilute immiscible polymer blends: a novel procedure to probe blend morphology. Macromolecules 41:4492–4500

    Article  ADS  Google Scholar 

  112. Reinheimer K, Grosso M, Wilhelm M (2011) Fourier Transform Rheology as a universal non-linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions. J Colloid Interf Sci 360:818–825

    Article  ADS  Google Scholar 

  113. Lim HT, Ahn KH, Hong JS, Hyun K (2013) Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow. J Rheol 57:767–789

    Article  ADS  Google Scholar 

  114. Hyun K, Wilhelm M (2008) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems. Macromolecules 42:411–422

    Article  ADS  Google Scholar 

  115. Ock HG, Ahn KH, Lee SJ, Hyun K (2016) Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology. Macromolecules 49:2832–2842

    Article  ADS  Google Scholar 

  116. Pang H, Xu L, Yan D-X, Li Z-M (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908–1933

    Article  Google Scholar 

  117. Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270:134–139

    Article  Google Scholar 

  118. Zhang S, Deng H, Zhang Q, Fu Q (2014) Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl Mater Interf 6:6835–6844

    Article  Google Scholar 

  119. Göldel A, Kasaliwal G, Pötschke P (2009) Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly(styrene-acrylonitrile). Macromol Rapid Commun 30:423–429

    Article  Google Scholar 

  120. Chen J, Cui X, Zhu Y, Jiang W, Sui K (2017) Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions. Carbon 114:441–448

    Article  Google Scholar 

  121. Chen J, H-y Lu, J-h Yang, Wang Y, X-t Zheng, C-l Zhang et al (2014) Effect of organoclay on morphology and electrical conductivity of PC/PVDF/CNT blend composites. Compos Sci Technol 94:30–38

    Article  Google Scholar 

  122. Chen J, Y-y Shi, J-h Yang, Zhang N, Huang T, Chen C et al (2012) A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. J Mater Chem 22:22398–22404

    Article  Google Scholar 

  123. Bai L, He S, Fruehwirth JW, Stein A, Macosko CW, Cheng X (2017) Localizing graphene at the interface of cocontinuous polymer blends: morphology, rheology, and conductivity of cocontinuous conductive polymer composites. J Rheol 61:575–587

    Article  ADS  Google Scholar 

  124. Mao C, Zhu Y, Jiang W (2012) Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. ACS Appl Mater Interfaces 4:5281–5286

    Article  Google Scholar 

  125. Pötschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42:965–969

    Article  Google Scholar 

  126. Hosseini SH, Entezami AA (2003) Conducting polymer blends of polypyrrole with polyvinyl acetate, polystyrene, and polyvinyl chloride based toxic gas sensors. J Appl Polym Sci 90:49–62

    Article  Google Scholar 

  127. Segal E, Tchoudakov R, Mironi-Harpaz I, Narkis M, Siegmann A (2005) Chemical sensing materials based on electrically-conductive immiscible polymer blends. Polym Int 54:1065–1075

    Article  Google Scholar 

  128. Panwar V, Kang B-S, Park J-O, Park S-H (2011) New ionic polymer–metal composite actuators based on PVDF/PSSA/PVP polymer blend membrane. Polym Eng Sci 51:1730–1741

    Article  Google Scholar 

  129. Ma L-F, Bao R-Y, Dou R, Zheng S-D, Liu Z-Y, Zhang R-Y et al (2016) Conductive thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend: From strain sensor to highly stretchable conductor. Compos Sci Technol 128:176–184

    Article  Google Scholar 

  130. Ji M, Deng H, Yan D, Li X, Duan L, Fu Q (2014) Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: an effective method for tunable resistivity–strain sensing behavior. Compos Sci Technol 92:16–26

    Article  Google Scholar 

  131. Mural PKS, Pawar SP, Jayanthi S, Madras G, Sood AK, Bose S (2015) Engineering nanostructures by decorating magnetic nanoparticles onto graphene oxide sheets to shield electromagnetic radiations. ACS Appl Mater Interf 7:16266–16278

    Article  Google Scholar 

  132. Soares BG, Gubbels F, Jérôme R, Teyssié P, Vanlathem E, Deltour R (1995) Electrical conductivity in carbon black-loaded polystyrene-polyisoprene blends. Selective localization of carbon black at the interface. Polym Bull 35:223–228

    Article  Google Scholar 

  133. Brochu P, Pei Q (2010) Advances in Dielectric Elastomers for Actuators and Artificial Muscles. Macromol Rapid Commun 31:10–36

    Article  Google Scholar 

  134. Lakshmi N, Tambe P (2017) EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Compos Interf 24:861–882

    Article  Google Scholar 

  135. Kang SJ, Park YJ, Bae I, Kim KJ, Kim H-C, Bauer S et al (2009) Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Advanc Funct Mater 19:2812–2818

    Article  Google Scholar 

  136. Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of Poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42:2587–2593

    Article  ADS  Google Scholar 

  137. Dang Z-M, Yuan J-K, Yao S-H, Liao R-J (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Advanc Mater 25:6334–6365

    Article  Google Scholar 

  138. Yin H-M, Qian J, Zhang J, Lin Z-F, Li J-S, Xu J-Z et al (2016) Engineering Porous Poly(lactic acid) scaffolds with high mechanical performance via a solid state extrusion/porogen leaching approach. Polymers 8:213

    Article  Google Scholar 

  139. Washburn NR, Simon CG, Tona A, Elgendy HM, Karim A, Amis EJ (2002) Co-extrusion of biocompatible polymers for scaffolds with co-continuous morphology. J Biomed Mater Res 60:20–29

    Article  Google Scholar 

  140. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    Article  Google Scholar 

  141. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH (2003) Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24:4011–4021

    Article  Google Scholar 

  142. Neves SC, Moreira Teixeira LS, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM et al (2011) Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32:1068–1079

    Article  Google Scholar 

  143. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539

    Article  Google Scholar 

  144. Liu Y, Ma L, Gao C (2012) Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater Sci Eng, C 32:2361–2366

    Article  Google Scholar 

  145. Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999) In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res 47:324–335

    Article  Google Scholar 

  146. He W, Yong T, Teo WE, Ma Z, Ramakrishna S (2005) Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng 11:1574–1588

    Article  Google Scholar 

  147. Malheiro VN, Caridade SG, Alves NM, Mano JF (2010) New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater 6:418–428

    Article  Google Scholar 

  148. Sun D, Liu M-Q, Guo J-H, Zhang J-Y, Li B-B, Li D-Y (2015) Preparation and characterization of PDMS-PVDF hydrophobic microporous membrane for membrane distillation. Desalination 370:63–71

    Article  Google Scholar 

  149. Lee E-J, Deka BJ, Guo J, Woo YC, Shon HK, An AK (2017) Engineering the Re-entrant hierarchy and surface energy of PDMS-PVDF membrane for membrane distillation using a facile and benign microsphere coating. Environ Sci Technol 51:10117–10126

    Article  ADS  Google Scholar 

  150. Mural PKS, Banerjee A, Rana MS, Shukla A, Padmanabhan B, Bhadra S et al (2014) Polyolefin based antibacterial membranes derived from PE/PEO blends compatibilized with amine terminated graphene oxide and maleated PE. J Mater Chem A 2:17635–17648

    Article  Google Scholar 

  151. Mural PKS, Sharma M, Shukla A, Bhadra S, Padmanabhan B, Madras G et al (2015) Porous membranes designed from bi-phasic polymeric blends containing silver decorated reduced graphene oxide synthesized via a facile one-pot approach. RSC Advanc 5:32441–32451

    Article  Google Scholar 

  152. Li H, Zhang H, Liang Z-Y, Chen Y-M, Zhu B-K, Zhu L-P (2014) Preparation and properties of Poly (vinylidene fluoride)/poly(dimethylsiloxane) graft (poly(propylene oxide)-block-poly(ethylene oxide)) blend porous separators and corresponding electrolytes. Electrochim Acta 116:413–420

    Article  Google Scholar 

  153. Li H, Chen Y-M, Ma X-T, Shi J-L, Zhu B-K, Zhu L-P (2011) Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: preparation and property of PVDF/poly(dimethylsiloxane) blending membrane. J Membr Sci 379:397–402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salehiyan, R., Sinha Ray, S. (2018). Processing of Polymer Blends, Emphasizing: Melt Compounding; Influence of Nanoparticles on Blend Morphology and Rheology; Reactive Processing in Ternary Systems; Morphology–Property Relationships; Performance and Application Challenges; and Opportunities and Future Trends. In: Sinha Ray, S. (eds) Processing of Polymer-based Nanocomposites. Springer Series in Materials Science, vol 278. Springer, Cham. https://doi.org/10.1007/978-3-319-97792-8_6

Download citation

Publish with us

Policies and ethics