Skip to main content

Graph Edit Distance in the Exact Context

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

This paper presents a new Mixed Integer Linear Program (MILP) formulation for the Graph Edit Distance (GED) problem. The contribution is an exact method that solves the GED problem for attributed graphs. It has an advantage over the best existing one when dealing with the case of dense of graphs, because all its constraints are independent from the number of edges in the graphs. The experiments have shown the efficiency of the new formulation in the exact context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Aisheh, Z., Raveaux, R., Ramel, J.: A graph database repository and performance evaluation metrics for graph edit distance. In: Proceedings of Graph-Based Representations in Pattern Recognition - 10th IAPR-TC-15, pp. 138–147 (2015)

    Google Scholar 

  2. Abu-Aisheh, Z., Raveaux, R., Ramel, J.Y., Martineau, P.: An exact graph edit distance algorithm for solving pattern recognition problems. In: 4th International Conference on Pattern Recognition Applications and Methods 2015 (2015)

    Google Scholar 

  3. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46 (2017)

    Article  Google Scholar 

  4. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)

    Article  Google Scholar 

  5. Darwiche, M., Conte, D., Raveaux, R., T’Kindt, V.: A local branching heuristic for solving a graph edit distance problem. Comput. Oper. Res. (2018). https://doi.org/10.1016/j.cor.2018.02.002. ISSN 0305-0548

  6. Ferrer, M., Serratosa, F., Riesen, K.: Improving bipartite graph matching by assessing the assignment confidence. Pattern Recogn. Lett. 65, 29–36 (2015)

    Article  Google Scholar 

  7. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006)

    Article  Google Scholar 

  8. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: New binary linear programming formulation to compute the graph edit distance. Pattern Recogn. 72, 254–265 (2017). https://doi.org/10.1016/j.patcog.2017.07.029

    Article  Google Scholar 

  9. Moreno-García, C.F., Cortés, X., Serratosa, F.: A graph repository for learning error-tolerant graph matching. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 519–529. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_46

    Chapter  Google Scholar 

  10. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  Google Scholar 

  11. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput.-Aided Mol. Des. 16(7), 521–533 (2002)

    Article  Google Scholar 

  12. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72903-7_1

    Chapter  MATH  Google Scholar 

  13. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. SMC 13(3), 353–362 (1983). https://doi.org/10.1109/TSMC.1983.6313167

    Article  MATH  Google Scholar 

  14. Serratosa, F.: Computation of graph edit distance: reasoning about optimality and speed-up. Image Vis. Comput. 40, 38–48 (2015)

    Article  Google Scholar 

  15. Zhang, Z., Shi, Q., McAuley, J.J., Wei, W., Zhang, Y., Van Den Hengel, A.: Pairwise matching through max-weight bipartite belief propagation. In: CVPR, vol. 5, p. 7 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Darwiche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Darwiche, M., Raveaux, R., Conte, D., T’Kindt, V. (2018). Graph Edit Distance in the Exact Context. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics