Skip to main content

A Preliminary Survey of Analyzing Dynamic Time-Varying Financial Networks Using Graph Kernels

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11004))

Abstract

In this paper, we investigate whether graph kernels can be used as a means of analyzing time-varying financial market networks. Specifically, we aim to identify the significant financial incident that changes the financial network properties through graph kernels. Our financial networks are abstracted from the New York Stock Exchange (NYSE) data over 6004 trading days, where each vertex represents the individual daily return price time series of a stock and each edge represents the correlation between pairwise series. We propose to use two state-of-the-art graph kernels for the analysis, i.e., the Jensen-Shannon graph kernel and the Weisfeiler-Lehman subtree kernel. The reason of using the two kernels is that they are the representative methods of global graph kernels and local graph kernels, respectively. We perform kernel Principle Components Analysis (kPCA) associated with each kernel matrix to embed the networks into a 3-dimensional principle space, where the time-varying networks of all trading days are visualized. Experimental results on the financial time series of NYSE dataset demonstrate that graph kernels can well distinguish abrupt changes of financial networks with time, and provide a more effective alternative way of analyzing original multiple co-evolving financial time series. We theoretically indicate the perspective of developing novel graph kernels on time-varying networks for multiple co-evolving time series analysis in future work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anand, K., Bianconi, G., Severini, S.: Shannon and von neumann entropy of random networks with heterogeneous expected degree. Phys. Rev. E 83(3), 036109 (2011)

    Article  MathSciNet  Google Scholar 

  2. Anand, K., Krioukov, D., Bianconi, G.: Entropy distribution and condensation in random networks with a given degree distribution. Phys. Rev. E 89(6), 062807 (2014)

    Article  Google Scholar 

  3. Bai, L., Hancock, E.R.: Graph kernels from the Jensen-Shannon divergence. J. Math. Imaging Vis. 47(1–2), 60–69 (2013)

    Article  Google Scholar 

  4. Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum Jensen-Shannon graph kernel for unattributed graphs. Pattern Recogn. 48(2), 344–355 (2015)

    Article  Google Scholar 

  5. Bai, L., Rossi, L., Zhang, Z., Hancock, E.R.: An aligned subtree kernel for weighted graphs. In: Proceedings of ICML, pp. 30–39 (2015)

    Google Scholar 

  6. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings of the IEEE International Conference on Data Mining, pp. 74–81 (2005)

    Google Scholar 

  7. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  8. Cuturi, M.: Fast global alignment kernels. In: Proceedings of ICML, pp. 929–936 (2011)

    Google Scholar 

  9. Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Inf. Sci. 181(1), 57–78 (2011)

    Article  MathSciNet  Google Scholar 

  10. Delvenne, J.-C., Libert, A.-S.: Centrality measures and thermodynamic formalism for complex networks. Phys. Rev. E 83(4), 046117 (2011)

    Article  Google Scholar 

  11. Feldman, D.P., Crutchfield, J.P.: Measures of statistical complexity: why? Phys. Lett. A 238(4), 244–252 (1998)

    Article  MathSciNet  Google Scholar 

  12. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_11

    Chapter  MATH  Google Scholar 

  13. Huang, K.: Statistical Mechanic. Wiley, New York (1987)

    Google Scholar 

  14. Javarone, M.A., Armano, G.: Quantum-classical transitions in complex networks. J. Stat. Mech: Theory Exp. 2013(04), 04019 (2013)

    Google Scholar 

  15. Johansson, F.D., Jethava, V., Dubhashi, D.P., Bhattacharyya, C.: Global graph kernels using geometric embeddings. In: Proceedings of ICML, pp. 694–702 (2014)

    Google Scholar 

  16. Martins, A.F.T., Smith, N.A., Xing, E.P., Aguiar, P.M.Q., Figueiredo, M.A.T.: Nonextensive information theoretic kernels on measures. J. Mach. Learn. Res. 10, 935–975 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Nicolis, G., Cantu, A.G., Nicolis, C.: Dynamical aspects of interaction networks. Int. J. Bifurcat. Chaos 15, 3467 (2005)

    Article  MathSciNet  Google Scholar 

  18. Shervashidze, N., Vishwanathan, S.V.N., Mehlhorn, K., Petri, T., Borgwardt, K.M.: Efficient graphlet kernels for large graph comparison. J. Mach. Learn. Res. 5, 488–495 (2009)

    Google Scholar 

  19. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Silva, F.N., Comin, C.H., Peron, T.K., Rodrigues, F.A., Ye, C., Wilson, R.C., Hancock, E.R., Costa, L.D.F.: Modular dynamics of financial market networks. arXiv preprint arXiv:1501.05040 (2015)

  21. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Los Altos (2011)

    Google Scholar 

  22. Xu, L., Niu, X., Xie, J., Abel, A., Luo, B.: A local-global mixed kernel with reproducing property. Neurocomputing 168, 190–199 (2015)

    Article  Google Scholar 

  23. Ye, C., Comin, C.H., Peron, T.K., Silva, F.N., Rodrigues, F.A., Costa, L.F., Torsello, A., Hancock, E.R.: Thermodynamic characterization of networks using graph polynomials. Phys. Rev. E 92(3), 032810 (2015)

    Article  Google Scholar 

  24. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96, 238701 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant no. 61602535, 61503422 and 61773415), the Open Projects Program of National Laboratory of Pattern Recognition, and the program for innovation research in Central University of Finance and Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, L., Bai, L., Rossi, L., Zhang, Z., Jiao, Y., Hancock, E.R. (2018). A Preliminary Survey of Analyzing Dynamic Time-Varying Financial Networks Using Graph Kernels. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics