Skip to main content

Learning Deep Embeddings via Margin-Based Discriminate Loss

  • Conference paper
  • First Online:
Book cover Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

Deep metric learning has gained much popularity in recent years, following the success of deep learning. However, existing frameworks of deep metric learning based on contrastive loss and triplet loss often suffer from slow convergence, partially because they employ only one positive example and one negative example while not interacting with the other positive or negative examples in each update. In this paper, we firstly propose the strict discrimination concept to seek an optimal embedding space. Based on this concept, we then propose a new metric learning objective called Margin-based Discriminate Loss which tries to keep the similar and the dissimilar strictly discriminate by pulling multiple positive examples together while pushing multiple negative examples away at each update. Importantly, it doesn’t need expensive sampling strategies. We demonstrate the validity of our proposed loss compared with the triplet loss as well as other competing loss functions for a variety of tasks on fine-grained image clustering and retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clarke, F., Ekeland, I.: Nonlinear oscillations and boundary-value problems for Hamiltonian systems. Arch. Rat. Mech. Anal. 78, 315–333 (1982)

    Article  MathSciNet  Google Scholar 

  2. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  3. Song, H.O., Xiang, Y., Jegelka, S., et al.: Deep metric learning via lifted structured feature embedding, pp. 4004–4012 (2015)

    Google Scholar 

  4. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: NIPS (2016)

    Google Scholar 

  5. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  6. Manning, C.D., Raghavan, P., Schutze, H., et al.: Introduction to Information Retrieval, vol. 5. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  7. Branson, S., Horn, G.V., Wah, C., Perona, P., Belongie, S.: The ignorant led by the blind: a hybrid human-machine vision system for fine-grained categorization. Int. J. Comput. Vis. 108(1–2), 3–29 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: ICCV Workshop on 3D Representation and Recognition (2013)

    Google Scholar 

  9. Bai, X., Zhang, H., Zhou, J.: VHR object detection based on structural feature extraction and query expansion. IEEE Trans. Geosci. Remote Sens. 52(10), 6508–6520 (2014)

    Article  Google Scholar 

  10. Bai, X., Yang, H., Zhou, J., Ren, P., Cheng, J.: Data-dependent hashing based on p-stable distribution. IEEE Trans. Image Process. 23(12), 5033–5046 (2014)

    Article  MathSciNet  Google Scholar 

  11. Bai, X., Hancock, E.R., Wilson, R.C.: Graph characteristics from the heat kernel trace. Pattern Recogn. 42(11), 2589–2606 (2009)

    Article  Google Scholar 

  12. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: NIPS, pp. 730–738 (2015)

    Google Scholar 

  13. Bell, S., Bala, K.: Learning visual similarity for product design with convolutional neural networks. ACM Trans. Graph. 34(4), 98:1–98:10 (2015)

    Article  Google Scholar 

  14. Li, Y., Su, H., Qi, C.R., Fish, N., Cohen-Or, D., Guibas, L.J.: Joint embeddings of shapes and images via CNN image purification. ACM Trans. Graph. 34(6), 234:1–234:12 (2015)

    Google Scholar 

  15. Kiapour, M.H., Han, X., Lazebnik, S., Berg, A.C., Berg, T.L.: Where to buy it: matching street clothing photos in online shops. In: ICCV (2015)

    Google Scholar 

  16. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (2005)

    Google Scholar 

  17. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: CVPR (2014)

    Google Scholar 

  18. Choy, C.B., Gwak, J., Savarese, S., Chandraker, M.K.: Universal correspondence network. In: NIPS (2016)

    Google Scholar 

  19. Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., Wu, Y.: Learning fine-grained image similarity with deep ranking. In: CVPR (2014)

    Google Scholar 

  20. Zhang, X., Zhou, F., Lin, Y., Zhang, S.: Embedding label structures for fine-grained feature representation. In: CVPR (2016)

    Google Scholar 

  21. Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Ranzato, M., Mikolov, T.: DeViSE: a deep visualsemantic embedding model. In: NIPS (2013)

    Google Scholar 

  22. Hsieh, C.-K., Yang, L., Cui, Y., Lin, T.-Y., Belongie, S., Estrin, D.: Collaborative metric learning. In: WWW (2017)

    Google Scholar 

  23. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

  24. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, 5 (2015)

    Google Scholar 

  25. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China project no. 61772057, in part by Beijing Natural Science Foundation project no. 4162037, and the support funding from State Key Lab. of Software Development Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, P., Tang, W., Bai, X. (2018). Learning Deep Embeddings via Margin-Based Discriminate Loss. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics