Skip to main content

Forest Type Classification in Poyang Lake Basin Based on Multi-source Data Fusion

  • Chapter
  • First Online:
Chinese Water Systems

Part of the book series: Terrestrial Environmental Sciences ((TERENVSC))

  • 623 Accesses

Abstract

Forests are among the most biologically-diverse and largest terrestrial ecosystems on Earth (Pan et al Annu Rev Ecol Evol Syst 44:593–622, 2013)[1]. They play an important role in global carbon and hydrological cycles and provide a wide range of valuable ecosystem goods and services, such as food, timber and climate moderation (Masek et al Forest Ecol Manag 355:109–123, 2015) [2], Mckinley et al Ecol Appl 21(6):1902–1924, 2011) [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cresda.com/CN/.

  2. 2.

    https://ladsweb.modaps.eosdis.nasa.gov/.

  3. 3.

    http://211.167.243.162:8085/8/chengguobaogao/showpageinit?lm=xxxz.

  4. 4.

    http://www.forestry.gov.cn/.

References

  1. Pan, Y., R.A. Birdsey, O.L. Phillips, and R.B. Jackson. 2013. The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics 44: 593–622.

    Article  Google Scholar 

  2. Masek, J.G., D.J. Hayes, M.J. Hughes, S.P. Healey, and D.P. Turner. 2015. The role of remote sensing in process-scaling studies of managed forest ecosystems. Forest Ecology and Management 355: 109–123.

    Article  Google Scholar 

  3. McKinley, D.C., et al. 2011. A Synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications 21 (6): 1902–1924.

    Article  Google Scholar 

  4. Young, R.A., and R.J. Giese. 1990. Introduction to forest science. Wiley.

    Google Scholar 

  5. Qin, Y., et al. 2016. Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010. Scientific Reports 6.

    Google Scholar 

  6. Molinier, M., et al. 2016. Relasphone-Mobile and participative in situ forest biomass measurements supporting satellite image mapping. Remote Sensing 8 (10): 869.

    Google Scholar 

  7. Pratihast, A.K., et al. 2014. Combining satellite data and community-based observations for forest monitoring. Forests 5 (10): 2464–2489.

    Article  Google Scholar 

  8. Wulder, M.A., and S.E. Franklin. 2012. Remote sensing of forest environments: Concepts and case studies. Springer.

    Google Scholar 

  9. Ren, C., H. Ju, H. Zhang, J. Huang, and Y. Zheng. 2016. Multi-source data for forest land type precise classification. Scientia Silvae Sinicae 52 (6): 54–65.

    Google Scholar 

  10. Torresan, C., P. Corona, G. Scrinzi, and J.V. Marsal. 2016. Using classification trees to predict forest structure types from LiDAR data. Annals of Forest Research 59 (2): 281–298.

    Google Scholar 

  11. Gaorgens, E.B., C.P.B. Soares, M.H. Nunes, and L.C.E. Rodriguez. 2016. Characterization of Brazilian forest types utilizing canopy height profiles derived from airborne laser scanning. Applied Vegetation Science 19 (3): 518-527.

    Google Scholar 

  12. Chen, C., Z. Bian, S. Li, P. Tang, and H. Wu. 2015. Improving forest type classification using the vegetation local difference index. International Journal of Remote Sensing 36 (14): 3701–3713.

    Article  Google Scholar 

  13. Castilla, G., S. Rodrigue, R.S. Skakun, and R.J. Hall. 2016. Four national maps of broad forest type provide inconsistent answers to the question of what burns in Canada. Remote Sensing 8 (7): 539.

    Google Scholar 

  14. Connette, G., P. Oswald, M. Songer, and P. Leimgruber. 2016. Mapping distinct forest types improves overall forest identification based on multi-spectral Landsat imagery for Myanmar’s Tanintharyi Region. Remote Sensing 8 (11): 882.

    Google Scholar 

  15. Chen, B., B. Huang, and B. Xu. 2015. Comparison of spatiotemporal fusion models: A review. Remote Sensing 7 (2): 1798–1835.

    Article  Google Scholar 

  16. Zhang, L.P., and H.F. Shen. 2016. Progress and future of remote sensing data fusion (in Chinese). Journal of Remote Sensing 20: 1050–1061.

    Google Scholar 

  17. H. Shen. 2012. Integrated fusion method for multiple temporal-spatial-spectral images. In International archives of the photogrammetry, remote sensing and spatial information sciences, vol. 2 , p. 2.

    Google Scholar 

  18. Zhang, Y., and M. He. 2007. Multi-spectral and hyperspectral image fusion using 3-D wavelet transform. Journal of Electronics (China) 24 (2): 218–224.

    Article  CAS  Google Scholar 

  19. Chen, Z., H. Pu, B. Wang, and G.-M. Jiang. 2014. Fusion of hyperspectral andmultispectral images: A novel framework based on generalization of pan-sharpening methods. IEEE Geoscience and Remote Sensing Letters 11 (8): 1418–1422.

    Article  Google Scholar 

  20. Vivone, G., et al. 2015. A critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing 53 (5): 2565–2586.

    Article  Google Scholar 

  21. Chen, B., B. Huang, and B. Xu. 2017. A hierarchical spatiotemporal adaptive fusion model using one image pair. International Journal of Digital Earth 10 (6): 639–655.

    Article  Google Scholar 

  22. Wang, F., et al. 2013. Community composition and spatial distribution of coniferous-broadleaved mixed forest in subtropical region, Jiangxi Province (in Chinese). Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition) 35 (4): 761–768.

    Google Scholar 

  23. Wulder, M.A., and N.C. Coops. 2014. Make earth observations open access: Freely available satellite imagery will improve science and environmentalmonitoring products. Nature 513 (7516): 30–32.

    Article  CAS  Google Scholar 

  24. Hansen, M.C., et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342 (6160): 850–853.

    Article  CAS  Google Scholar 

  25. Lehmann, E.A., J.F. Wallace, P.A. Caccetta, S.L. Furby, and K. Zdunic. 2013. Forest cover trends from time series Landsat data for the Australian continent. International Journal of Applied Earth Observation and Geoinformation 21: 453–462.

    Article  Google Scholar 

  26. Zhu, Z., and C.E. Woodcock. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment 144: 152–171.

    Article  Google Scholar 

  27. Chavez, P., S.C. Sides, J.A. Anderson, et al. 1991. Comparison of three different methods to merge multiresolution and multispectral data—Landsat TM and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing 57 (3): 295–303.

    Google Scholar 

  28. Haydn, R., G.W. Dalke, J. Henkel, and J.E. Bare. 1982. Application of the IHS color transform to the processing of multisensor data and image enhancement. In Proceedings of the international symposium on remote sensing of environment, first thematic conference: Remote sensing of arid and semi-arid lands. Ann Arbor, Michigan. Center Remote Sensing Information & Analysis, Environmental Research Institute of Michigan, 1982. Cairo, Egypt.

    Google Scholar 

  29. Aiazzi, B., L. Alparone, S. Baronti, and A. Garzelli. 2002. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Transactions on Geoscience and Remote Sensing 40 (10): 2300–2312.

    Article  Google Scholar 

  30. Zhang, L., H. Shen, W. Gong, and H. Zhang. 2012. Adjustable model-based fusion method for multispectral and panchromatic images. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42 (6): 1693–1704.

    Google Scholar 

  31. Jiang, C., H. Zhang, H. Shen, and L. Zhang. 2012. A practical compressed sensing-based pan-sharpening method. IEEE Geoscience and Remote Sensing Letters 9 (4): 629–633.

    Article  Google Scholar 

  32. Fauvel, M., J.A. Benediktsson, J. Chanussot, and J.R. Sveinsson. 2008. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing 46 (11): 3804–3814.

    Article  Google Scholar 

  33. Xu, B., and P. Gong. 2007. Land-use/land-cover classification with multispectral and hyperspectral EO-1 data. Photogrammetric Engineering & Remote Sensing 73 (8): 955–965.

    Article  Google Scholar 

  34. Chen, B., L. Chen, M. Lu, and B. Xu. 2017. Wetland mapping by fusing fine spatial and hyperspectral resolution images. Ecological Modelling 353: 95–106.

    Article  Google Scholar 

  35. Acerbi-Junior, F.W., J. Clevers, and M.E. Schaepman. 2006. The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna. International Journal of Applied Earth Observation and Geoinformation 8 (4): 278–288.

    Article  Google Scholar 

  36. Hilker, T., et al. 2009. A new data fusion model for high spatial-and temporalresolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment 113 (8): 1613–1627.

    Article  Google Scholar 

  37. Gao, F., J. Masek, M. Schwaller, and F. Hall. 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing 44 (8): 2207–2218.

    Article  Google Scholar 

  38. Zhu, X., J. Chen, F. Gao, X. Chen, and J.G. Masek. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment 114 (11): 2610–2623.

    Article  Google Scholar 

  39. Michishita, R., L. Chen, J. Chen, X. Zhu, and B. Xu. 2015. Spatiotemporal reflectance blending in a wetland environment. International Journal of Digital Earth 8 (5): 364–382.

    Article  Google Scholar 

  40. Zhukov, B., D. Oertel, F. Lanzl, and G. Reinhackel. 1999. Unmixing-based multisensor multiresolution image fusion. IEEE Transactions on Geoscience and Remote Sensing 37 (3): 1212–1226.

    Article  Google Scholar 

  41. Zurita-Milla, R., J.G.P.W. Clevers, and M.E. Schaepman. 2008. Unmixingbased Landsat TM and MERIS FR data fusion. IEEE Geoscience and Remote Sensing Letters 5 (3): 453–457.

    Article  Google Scholar 

  42. Zhu, X., et al. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment 172: 165–177.

    Article  Google Scholar 

  43. Huang, B., and H. Song. 2012. Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing 50 (10): 3707–3716.

    Article  Google Scholar 

  44. Mountrakis, G., J. Im, and C. Ogole. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 66 (3): 247–259.

    Article  Google Scholar 

  45. Foody, G.M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment 80 (1): 185–201.

    Article  Google Scholar 

  46. Ren, C., H. Ju, H. Zhang, and J. Huang. 2016. Forest land type precise classification based on SPOT5 and GF-1 images. In 2016 IEEE international conference on geoscience and remote sensing symposium (IGARSS), IEEE. pp. 894–897.

    Google Scholar 

  47. Xu, B., and P. Gong. 2008. Noise estimation in a noise-adjusted principal component transformation and hyperspectral image restoration. Canadian Journal of Remote Sensing 34 (3): 271–286.

    Google Scholar 

  48. Acito, N., M. Diani, and G. Corsini. 2011. Subspace-based striping noise reduction in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing 49 (4): 1325–1342.

    Article  Google Scholar 

  49. Lu, M., et al. 2017. Penalized linear discriminant analysis of hyperspectral imagery for noise removal. IEEE Geoscience and Remote Sensing Letters 14 (3): 359–363.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Ming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ming, L. (2019). Forest Type Classification in Poyang Lake Basin Based on Multi-source Data Fusion. In: Yue, T., et al. Chinese Water Systems. Terrestrial Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-97725-6_15

Download citation

Publish with us

Policies and ethics