Advertisement

Forest Type Classification in Poyang Lake Basin Based on Multi-source Data Fusion

Chapter
Part of the Terrestrial Environmental Sciences book series (TERENVSC)

Abstract

Forests are among the most biologically-diverse and largest terrestrial ecosystems on Earth (Pan et al Annu Rev Ecol Evol Syst 44:593–622, 2013)[1]. They play an important role in global carbon and hydrological cycles and provide a wide range of valuable ecosystem goods and services, such as food, timber and climate moderation (Masek et al Forest Ecol Manag 355:109–123, 2015) [2], Mckinley et al Ecol Appl 21(6):1902–1924, 2011) [3].

References

  1. 1.
    Pan, Y., R.A. Birdsey, O.L. Phillips, and R.B. Jackson. 2013. The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics 44: 593–622.CrossRefGoogle Scholar
  2. 2.
    Masek, J.G., D.J. Hayes, M.J. Hughes, S.P. Healey, and D.P. Turner. 2015. The role of remote sensing in process-scaling studies of managed forest ecosystems. Forest Ecology and Management 355: 109–123.CrossRefGoogle Scholar
  3. 3.
    McKinley, D.C., et al. 2011. A Synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications 21 (6): 1902–1924.CrossRefGoogle Scholar
  4. 4.
    Young, R.A., and R.J. Giese. 1990. Introduction to forest science. Wiley.Google Scholar
  5. 5.
    Qin, Y., et al. 2016. Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010. Scientific Reports 6.Google Scholar
  6. 6.
    Molinier, M., et al. 2016. Relasphone-Mobile and participative in situ forest biomass measurements supporting satellite image mapping. Remote Sensing 8 (10): 869.Google Scholar
  7. 7.
    Pratihast, A.K., et al. 2014. Combining satellite data and community-based observations for forest monitoring. Forests 5 (10): 2464–2489.CrossRefGoogle Scholar
  8. 8.
    Wulder, M.A., and S.E. Franklin. 2012. Remote sensing of forest environments: Concepts and case studies. Springer.Google Scholar
  9. 9.
    Ren, C., H. Ju, H. Zhang, J. Huang, and Y. Zheng. 2016. Multi-source data for forest land type precise classification. Scientia Silvae Sinicae 52 (6): 54–65.Google Scholar
  10. 10.
    Torresan, C., P. Corona, G. Scrinzi, and J.V. Marsal. 2016. Using classification trees to predict forest structure types from LiDAR data. Annals of Forest Research 59 (2): 281–298.Google Scholar
  11. 11.
    Gaorgens, E.B., C.P.B. Soares, M.H. Nunes, and L.C.E. Rodriguez. 2016. Characterization of Brazilian forest types utilizing canopy height profiles derived from airborne laser scanning. Applied Vegetation Science 19 (3): 518-527.Google Scholar
  12. 12.
    Chen, C., Z. Bian, S. Li, P. Tang, and H. Wu. 2015. Improving forest type classification using the vegetation local difference index. International Journal of Remote Sensing 36 (14): 3701–3713.CrossRefGoogle Scholar
  13. 13.
    Castilla, G., S. Rodrigue, R.S. Skakun, and R.J. Hall. 2016. Four national maps of broad forest type provide inconsistent answers to the question of what burns in Canada. Remote Sensing 8 (7): 539.Google Scholar
  14. 14.
    Connette, G., P. Oswald, M. Songer, and P. Leimgruber. 2016. Mapping distinct forest types improves overall forest identification based on multi-spectral Landsat imagery for Myanmar’s Tanintharyi Region. Remote Sensing 8 (11): 882.Google Scholar
  15. 15.
    Chen, B., B. Huang, and B. Xu. 2015. Comparison of spatiotemporal fusion models: A review. Remote Sensing 7 (2): 1798–1835.CrossRefGoogle Scholar
  16. 16.
    Zhang, L.P., and H.F. Shen. 2016. Progress and future of remote sensing data fusion (in Chinese). Journal of Remote Sensing 20: 1050–1061.Google Scholar
  17. 17.
    H. Shen. 2012. Integrated fusion method for multiple temporal-spatial-spectral images. In International archives of the photogrammetry, remote sensing and spatial information sciences, vol. 2 , p. 2.Google Scholar
  18. 18.
    Zhang, Y., and M. He. 2007. Multi-spectral and hyperspectral image fusion using 3-D wavelet transform. Journal of Electronics (China) 24 (2): 218–224.CrossRefGoogle Scholar
  19. 19.
    Chen, Z., H. Pu, B. Wang, and G.-M. Jiang. 2014. Fusion of hyperspectral andmultispectral images: A novel framework based on generalization of pan-sharpening methods. IEEE Geoscience and Remote Sensing Letters 11 (8): 1418–1422.CrossRefGoogle Scholar
  20. 20.
    Vivone, G., et al. 2015. A critical comparison among pansharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing 53 (5): 2565–2586.CrossRefGoogle Scholar
  21. 21.
    Chen, B., B. Huang, and B. Xu. 2017. A hierarchical spatiotemporal adaptive fusion model using one image pair. International Journal of Digital Earth 10 (6): 639–655.CrossRefGoogle Scholar
  22. 22.
    Wang, F., et al. 2013. Community composition and spatial distribution of coniferous-broadleaved mixed forest in subtropical region, Jiangxi Province (in Chinese). Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition) 35 (4): 761–768.Google Scholar
  23. 23.
    Wulder, M.A., and N.C. Coops. 2014. Make earth observations open access: Freely available satellite imagery will improve science and environmentalmonitoring products. Nature 513 (7516): 30–32.CrossRefGoogle Scholar
  24. 24.
    Hansen, M.C., et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342 (6160): 850–853.CrossRefGoogle Scholar
  25. 25.
    Lehmann, E.A., J.F. Wallace, P.A. Caccetta, S.L. Furby, and K. Zdunic. 2013. Forest cover trends from time series Landsat data for the Australian continent. International Journal of Applied Earth Observation and Geoinformation 21: 453–462.CrossRefGoogle Scholar
  26. 26.
    Zhu, Z., and C.E. Woodcock. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment 144: 152–171.CrossRefGoogle Scholar
  27. 27.
    Chavez, P., S.C. Sides, J.A. Anderson, et al. 1991. Comparison of three different methods to merge multiresolution and multispectral data—Landsat TM and SPOT panchromatic. Photogrammetric Engineering and Remote Sensing 57 (3): 295–303.Google Scholar
  28. 28.
    Haydn, R., G.W. Dalke, J. Henkel, and J.E. Bare. 1982. Application of the IHS color transform to the processing of multisensor data and image enhancement. In Proceedings of the international symposium on remote sensing of environment, first thematic conference: Remote sensing of arid and semi-arid lands. Ann Arbor, Michigan. Center Remote Sensing Information & Analysis, Environmental Research Institute of Michigan, 1982. Cairo, Egypt.Google Scholar
  29. 29.
    Aiazzi, B., L. Alparone, S. Baronti, and A. Garzelli. 2002. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Transactions on Geoscience and Remote Sensing 40 (10): 2300–2312.CrossRefGoogle Scholar
  30. 30.
    Zhang, L., H. Shen, W. Gong, and H. Zhang. 2012. Adjustable model-based fusion method for multispectral and panchromatic images. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42 (6): 1693–1704.Google Scholar
  31. 31.
    Jiang, C., H. Zhang, H. Shen, and L. Zhang. 2012. A practical compressed sensing-based pan-sharpening method. IEEE Geoscience and Remote Sensing Letters 9 (4): 629–633.CrossRefGoogle Scholar
  32. 32.
    Fauvel, M., J.A. Benediktsson, J. Chanussot, and J.R. Sveinsson. 2008. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing 46 (11): 3804–3814.CrossRefGoogle Scholar
  33. 33.
    Xu, B., and P. Gong. 2007. Land-use/land-cover classification with multispectral and hyperspectral EO-1 data. Photogrammetric Engineering & Remote Sensing 73 (8): 955–965.CrossRefGoogle Scholar
  34. 34.
    Chen, B., L. Chen, M. Lu, and B. Xu. 2017. Wetland mapping by fusing fine spatial and hyperspectral resolution images. Ecological Modelling 353: 95–106.CrossRefGoogle Scholar
  35. 35.
    Acerbi-Junior, F.W., J. Clevers, and M.E. Schaepman. 2006. The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna. International Journal of Applied Earth Observation and Geoinformation 8 (4): 278–288.CrossRefGoogle Scholar
  36. 36.
    Hilker, T., et al. 2009. A new data fusion model for high spatial-and temporalresolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment 113 (8): 1613–1627.CrossRefGoogle Scholar
  37. 37.
    Gao, F., J. Masek, M. Schwaller, and F. Hall. 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing 44 (8): 2207–2218.CrossRefGoogle Scholar
  38. 38.
    Zhu, X., J. Chen, F. Gao, X. Chen, and J.G. Masek. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment 114 (11): 2610–2623.CrossRefGoogle Scholar
  39. 39.
    Michishita, R., L. Chen, J. Chen, X. Zhu, and B. Xu. 2015. Spatiotemporal reflectance blending in a wetland environment. International Journal of Digital Earth 8 (5): 364–382.CrossRefGoogle Scholar
  40. 40.
    Zhukov, B., D. Oertel, F. Lanzl, and G. Reinhackel. 1999. Unmixing-based multisensor multiresolution image fusion. IEEE Transactions on Geoscience and Remote Sensing 37 (3): 1212–1226.CrossRefGoogle Scholar
  41. 41.
    Zurita-Milla, R., J.G.P.W. Clevers, and M.E. Schaepman. 2008. Unmixingbased Landsat TM and MERIS FR data fusion. IEEE Geoscience and Remote Sensing Letters 5 (3): 453–457.CrossRefGoogle Scholar
  42. 42.
    Zhu, X., et al. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment 172: 165–177.CrossRefGoogle Scholar
  43. 43.
    Huang, B., and H. Song. 2012. Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing 50 (10): 3707–3716.CrossRefGoogle Scholar
  44. 44.
    Mountrakis, G., J. Im, and C. Ogole. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 66 (3): 247–259.CrossRefGoogle Scholar
  45. 45.
    Foody, G.M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment 80 (1): 185–201.CrossRefGoogle Scholar
  46. 46.
    Ren, C., H. Ju, H. Zhang, and J. Huang. 2016. Forest land type precise classification based on SPOT5 and GF-1 images. In 2016 IEEE international conference on geoscience and remote sensing symposium (IGARSS), IEEE. pp. 894–897.Google Scholar
  47. 47.
    Xu, B., and P. Gong. 2008. Noise estimation in a noise-adjusted principal component transformation and hyperspectral image restoration. Canadian Journal of Remote Sensing 34 (3): 271–286.Google Scholar
  48. 48.
    Acito, N., M. Diani, and G. Corsini. 2011. Subspace-based striping noise reduction in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing 49 (4): 1325–1342.CrossRefGoogle Scholar
  49. 49.
    Lu, M., et al. 2017. Penalized linear discriminant analysis of hyperspectral imagery for noise removal. IEEE Geoscience and Remote Sensing Letters 14 (3): 359–363.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Geographic Sciences and Natural Resources Research (CAS)BeijingChina

Personalised recommendations