Skip to main content

Determination of the Gluon Condensate

  • Chapter
  • First Online:
Quantum Chromodynamics Sum Rules

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 588 Accesses

Abstract

As mentioned in Chap. 2, the gluon condensate of dimension \(d=4\) is one of the two leading order terms in the OPE, Eq. (2.2), together with the light-quark condensate. The gluon condensate was introduced in the pioneer papers on Laplace QCD sum rules by Shifman et al. (Nucl Phys B:147, 385 (1979), [1]). Its numerical value was estimated using experimental information on \(e^- e^+\) annihilation in the charmonium channel, with the result (Shifman et al. in Nucl Phys B:147, 385, 1979, [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Nucl. Phys. B 147, 385 (1979). (ibid., B 147, 448 (1979))

    Google Scholar 

  2. B. Guberina, R. Meckbach, R.D. Peccei, R. Rückl, Nucl. Phys. B 184, 476 (1981)

    Article  ADS  Google Scholar 

  3. J.S. Bell, R.A. Bertlmannn, Nucl. Phys. B 177, 218 (1981)

    Article  ADS  Google Scholar 

  4. J.S. Bell, R.A. Bertlmannn, Phys. Lett. B 137, 107 (1984)

    Article  ADS  Google Scholar 

  5. A. Bradley, C. S. Langensiepen, G. Shaw, Phys. Lett. B 102 180, 359

    Google Scholar 

  6. D.J. Broadhurst, Phys. Lett. B 123, 251 (1983)

    Article  ADS  Google Scholar 

  7. J. Marrow, G. Shaw, Z. Phys, C-Particles and Fields 33, 237 (1986)

    Google Scholar 

  8. J. Marrow, J. Parker, G. Shaw, Z. Phys. C-Particles and Fields 37, 103 (1987)

    Google Scholar 

  9. S.I. Eidelman, L.M. Kurdadze, A.I. Vainshtein, Phys. Lett. B 82, 278 (1979)

    Article  ADS  Google Scholar 

  10. R.A. Bertlmann, C.A. Dominguez, M. Loewe, M. Perrotet, E. de Rafael, Z. Phys. C-Particles and Fields 39, 231 (1988)

    Google Scholar 

  11. H. Albrecht et al., Z. Phys. C-Particles and Fields 33, 7 (1986)

    Google Scholar 

  12. C.A. Dominguez, J. Solá, Z. Phys. C-Particles and Fields 40, 63 (1988)

    Google Scholar 

  13. M. Beneke, M. Jamin, J. High Energy Phys. 01, 125 (2013)

    Article  ADS  Google Scholar 

  14. P. Minkowski, private communication

    Google Scholar 

  15. K.G. Patrignani et al., Particle Data Group. Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  16. S. Bodenstein, C.A. Dominguez, S.I. Eidelman, H. Spiesberger, K. Schilcher, J. High Energy Phys. 01, 039 (2012)

    Article  ADS  Google Scholar 

  17. C.A. Dominguez, L.A. Hernandez, K. Schilcher, H. Spiesberger, J. High Energy Phys. 03, 053 (2015)

    Article  ADS  Google Scholar 

  18. C.A. Dominguez, L.A. Hernandez, K. Schilcher, J. High Energy Phys. 07, 110 (2015)

    Article  ADS  Google Scholar 

  19. S.G. Gorishnii, A.L. Kataev, S.A. Larin, Phys. Lett. B 259, 144 (1991)

    Article  ADS  Google Scholar 

  20. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, Phys. Lett. B 400, 379 (1997)

    Article  ADS  Google Scholar 

  21. P.A. Baikov, K. Chetyrkin, J.H. Kühn, Phys. Rev. Lett. 101, 012002 (2008)

    Article  ADS  Google Scholar 

  22. K. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997)

    Article  ADS  Google Scholar 

  23. M. Davier, A. Höcker, Z. Zhang, Rev. Mod. Phys. 78, 1043 (2006)

    Article  ADS  Google Scholar 

  24. A. Pich, Progr. Part. Nucl. Phys. 75, 41 (2014)

    Google Scholar 

  25. D. Cronin-Hennessy et al., CLEO 2009. Phys. Rev. D 80, 072001 (2009)

    Article  ADS  Google Scholar 

  26. J.Z. Bai et al., BES 2006. Phys. Rev. Lett. 97, 262001 (2006)

    Article  ADS  Google Scholar 

  27. D.J. Broadhurst et al., Phys. Lett. B 329, 103 (1994)

    Article  ADS  Google Scholar 

  28. J.H. Kühn, M. Steinhauser, C. Sturm, Nucl. Phys. B 778, 192 (2007)

    Article  ADS  Google Scholar 

  29. R. Horsley et al., Phys. Rev. D 86, 054502 (2012)

    Article  ADS  Google Scholar 

  30. C. McNeile et al., PQCD Collaboration. Phys. Rev. D 82, 034512 (2010)

    Article  ADS  Google Scholar 

  31. S. Bodenstein, J. Bordes, C.A. Dominguez, J. Peñarrocha, K. Schilcher, Phys. Rev. D 83, 074014 (2011)

    Article  ADS  Google Scholar 

  32. R. Boughezal, M. Czakon, T. Schutzmeier, Phys. Rev. D 74, 074006 (2006)

    Article  ADS  Google Scholar 

  33. A. Maier, P. Maierhöfer, P. Marquard, Phys. Lett. B 669, 88 (2008)

    Article  ADS  Google Scholar 

  34. R. Boughezal, M. Czakon, T. Schutzmeier, Nucl. Phys. B (Proc. Suppl.) 160 (2006) 164

    Google Scholar 

  35. K.G. Chetyrkin, J.H. Kühn, C. Sturm, Eur. Phys. J. C 48, 107 (2006)

    Article  ADS  Google Scholar 

  36. A. Maier, P. Maierhöfer, P. Marquard, Nucl. Phys. B 797, 218 (2008)

    Article  ADS  Google Scholar 

  37. A. Maier, P. Maierhöfer, P. Marquard, A.V. Smirnov, Nucl. Phys. B 824, 1 (2010)

    Article  ADS  Google Scholar 

  38. K. Chetyrkin et al., Theor. Math. Phys. 170, 217 (2012)

    Article  MathSciNet  Google Scholar 

  39. K.G. Chetyrkin, R. Harlander, J.H. Kühn, M. Steinhauser, Nucl. Phys. B 503, 339 (1997)

    Article  ADS  Google Scholar 

  40. P.A. Baikov, K. Chetyrkin, J.H. Kühn, Nucl. Phys. Proc. Suppl. B 135, 243 (2004)

    Article  ADS  Google Scholar 

  41. K.G. Chetyrkin et al., Phys. Rev. D 80, 074010 (2009)

    Article  ADS  Google Scholar 

  42. A. Hoang, M. Jamin, Phys. Lett. B 594, 127 (2004)

    Article  ADS  Google Scholar 

  43. J.Z. Bai et al., BES 2002. Phys. Rev. Lett. 88, 101802 (2002)

    Article  ADS  Google Scholar 

  44. R. Horsley et al., arXiv: 1205.1659

  45. B.V. Geshkenbein, Phys. Rev. D 70, 074027 (2004)

    Article  ADS  Google Scholar 

  46. A. Gomez Nicola, J.R. Pelaez, J. Ruiz de Elvira, Phys. Rev. D 82, 074012 (2010)

    Article  ADS  Google Scholar 

  47. J. Bordes, C.A. Dominguez, J. Peñarrocha, K. Schilcher, J. High Energy Phys. 02, 037 (2006)

    Article  ADS  Google Scholar 

  48. C.A. Dominguez, K. Schilcher, J. High Energy Phys. 01, 093 (2007)

    Article  ADS  Google Scholar 

  49. M. Gonzalez-Alonso, A. Pich, J. Prades, Phys. Rev. D 81, 074007 (2010)

    Article  ADS  Google Scholar 

  50. M. Gonzalez-Alonso, A. Pich, J. Prades, Phys. Rev. D 82, 014019 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesareo A. Dominguez .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dominguez, C.A. (2018). Determination of the Gluon Condensate. In: Quantum Chromodynamics Sum Rules. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-97722-5_8

Download citation

Publish with us

Policies and ethics