Skip to main content

Challenges of Crowd Sensing for Cost-Effective Data Management in the Cloud

  • Conference paper
  • First Online:
Cloud Computing and Big Data: Technologies, Applications and Security (CloudTech 2017)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 49))

Abstract

Cloud computing has attracted researchers and organizations in the last decade due to the powerful and elastic computation capabilities provided on-demand to users. Mobile cloud computing is a way of enriching users of mobile devices with the computational resources and services of clouds. The recent developments of mobile devices and their sensors introduced the crowd sensing paradigm that uses powerful cloud computing to analyze, manage and store data produced by mobile sensors. However, crowd sensing in the context of using the cloud is posing new challenges that increase the importance of adopting new approaches to overcome them. This chapter introduces a middleware solution that provides a set of services for cost-effective management of crowd sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Talasila, M., Curtmola, R., Borcea, C.: Mobile crowd sensing. In: Vacca, J.R. (ed.) Handbook of Sensor Networking: Advanced Technologies and Applications. CRC Press, Boca Raton (2015)

    Google Scholar 

  2. Bierzynski, K., Escobar, A., Eberl, M.: Cloud, fog and edge: cooperation for the future? In: 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, pp. 62–67 (2017)

    Google Scholar 

  3. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC 2012, pp. 13–16. ACM, New York (2012)

    Google Scholar 

  4. Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev. 44, 27–32 (2014)

    Article  Google Scholar 

  5. Ahn, S., Gorlatova, M., Chiang, M.: Leveraging fog and cloud computing for efficient computational offloading. In: 2017 IEEE MIT Undergraduate Research Technology Conference (URTC), Cambridge, pp. 1–4 (2017)

    Google Scholar 

  6. Newton, R., Toledo, S., Girod, L., Balakrishnan, H., Madden, S.: Wishbone: profile-based partitioning for sensornet applications. In: Proceedings of the USENIX NSDI, April 2009

    Google Scholar 

  7. Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R., Bahl, P.: MAUI: making smartphones last longer with code offload. In: Proceedings of the ACM MobiSys, June 2010

    Google Scholar 

  8. Georgiev, P., Lane, N.D., Rachuri, K.K., Mascolo, C.: LEO: scheduling sensor inference algorithms across heterogeneous mobile processors and network resources. In: Proceedings of the ACM Mobi-Com, pp. 320–333, October 2016

    Google Scholar 

  9. Li, J., Jin, J., Yuan, D., Zhang, H.: Virtual fog: a virtualization enabled fog computing framework for internet of things. IEEE Internet Things J. 5(1), 121–131 (2018)

    Article  Google Scholar 

  10. Bhargava, K., Ivanov, S.: A fog computing approach for localization in WSN. In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, pp. 1–7 (2017)

    Google Scholar 

  11. Ashjaei, M., Bengtsson, M.: Enhancing smart maintenance management using fog computing technology. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, pp. 1561–1565 (2017)

    Google Scholar 

  12. El-Sayed, H., et al.: Edge of things: the big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access 6, 1706–1717 (2018)

    Article  Google Scholar 

  13. Ali, S., Ghazal, M.: Real-time heart attack mobile detection service (RHAMDS): an IoT use case for software defined networks. In: Proceedings of the IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6, April 2017

    Google Scholar 

  14. Feng, J., Liu, Z., Wu, C., Ji, Y.: AVE: autonomous vehicular edge computing framework with ACO-based scheduling. IEEE Trans. Veh. Technol. 66(12), 10660–10675 (2017)

    Article  Google Scholar 

  15. Zhang, K., Mao, Y., Leng, S., He, Y., Zhang, Y.: Mobile-edge computing for vehicular networks: a promising network paradigm with predictive off-loading. IEEE Veh. Technol. Mag. 12(2), 36–44 (2017)

    Article  Google Scholar 

  16. Al-Shuwaili, A., Simeone, O.: Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wirel. Commun. Lett. 6(3), 398–401 (2017)

    Article  Google Scholar 

  17. Beraldi, R., Mtibaa, A., Alnuweiri, H.: Cooperative load balancing scheme for edge computing resources. In: Proceedings of the 2nd International Conference Fog Mobile Edge Computing (FMEC), pp. 94–100, May 2017

    Google Scholar 

  18. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

    Article  Google Scholar 

  19. Wang, Z., Zhong, Z., Zhao, D., Ni, M.: Bus-based cloudlet cooperation strategy in vehicular networks. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, pp. 1–6 (2017)

    Google Scholar 

  20. Lazreg, A.B., Arbia, A.B., Youssef, H.: A synchronized offline cloudlet architecture. In: 2017 International Conference on Engineering & MIS (ICEMIS), Monastir, pp. 1–6 (2017)

    Google Scholar 

  21. Guan, S., De Grande, R.E., Boukerche, A.: A cloudlet-based task-centric offloading to enable energy-efficient mobile applications. In: 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, pp. 564–569 (2017)

    Google Scholar 

  22. Alkhelaiwi, A., Grigoras, D.: The origin and trustworthiness of data in smart city applications. In: IEEE/ACM 8th International Conference on Utility and Cloud Computing, pp. 376–382 (2015)

    Google Scholar 

  23. Alkhelaiwi, A., Grigoras, D.: Scheduling crowdsensing data to smart city applications in the cloud. In: 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, pp. 395–401 (2016)

    Google Scholar 

  24. Alkhelaiwi, A., Grigoras, D.: Data reduction as a service in smart city architecture. In: 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService), San Francisco, pp. 172–178 (2017)

    Google Scholar 

  25. Wu, F., Luo, T., Liang, J.C.J.: A crowdsourced WiFi sensing system with an endorsement network in smart cities. In: 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 1–2, April 2015

    Google Scholar 

  26. Wang, X., Cheng, W., Mohapatra, P., Abdelzaher, T.: ARTSense: anonymous reputation and trust in participatory sensing. In: 2013 Proceedings IEEE, INFOCOM, pp. 2517–2525, April 2013

    Google Scholar 

  27. Kantarci, B., Mouftah, H.T.: Trustworthy sensing for public safety in cloud-centric internet of things. IEEE Internet Things (IoT) J. 1(4), 360–368 (2014)

    Article  Google Scholar 

  28. Huang, K.L., Kanhere, S.S., Hu, W.: Are you contributing trustworthy data? The case for a reputation system in participatory sensing. In: Proceedings of ACM (MSWiM 2010) (2010)

    Google Scholar 

  29. Ganeriwal, S., Srivastava, M.: Reputation-based framework for high integrity sensor networks. ACM Trans. Sens. Netw. (TOSN) 4(3), 15 (2008)

    Google Scholar 

  30. zlib. http://www.zlib.net

  31. Yeh, P.-S., Xia-Serafino, W., Miles, L., Kobler, B., Menasce, D.: Implementation of CCSDS lossless data compression in HDF. In: Earth Science Technology Conference (2002)

    Google Scholar 

  32. Liu, S., Huang, X., Ni, Y., Fu, H., Yang, G.: A versatile compression method for floating-point data stream. In: Fourth International Conference on Networking and Distributed Computing, Los Angeles, pp. 141–145 (2013)

    Google Scholar 

  33. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast lossless compression of scientific floating-point data. In: Data Compression Conference (DCC 2006), pp. 133–142 (2006)

    Google Scholar 

  34. Townsend, K.R., Zambreno, J.: A multi-phase approach to floating-point compression. In: IEEE International Conference on Electro/Information Technology (EIT), Dekalb, pp. 251–256 (2015)

    Google Scholar 

  35. Gomez, L.A.B., Cappello, F.: Improving floating point compression through binary masks. In: IEEE International Conference on Big Data, Silicon Valley, pp. 326–331 (2013)

    Google Scholar 

  36. Alkhelaiwi, A., Grigoras, D.: Smart city data storage optimization in the cloud. In: IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), Bamberg (2018)

    Google Scholar 

Download references

Acknowledgements

Aseel Alkhelaiwi’s research is funded by King Saud University in Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aseel Alkhelaiwi or Dan Grigoras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alkhelaiwi, A., Grigoras, D. (2019). Challenges of Crowd Sensing for Cost-Effective Data Management in the Cloud. In: Zbakh, M., Essaaidi, M., Manneback, P., Rong, C. (eds) Cloud Computing and Big Data: Technologies, Applications and Security. CloudTech 2017. Lecture Notes in Networks and Systems, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-97719-5_6

Download citation

Publish with us

Policies and ethics