Skip to main content

Machine Learning Applications in Supply Chains: Long Short-Term Memory for Demand Forecasting

  • Conference paper
  • First Online:
Cloud Computing and Big Data: Technologies, Applications and Security (CloudTech 2017)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 49))

Abstract

Due to the rapid technological advances, machine Learning or the ability of a machine to learn automatically has found applications in various fields. It has proven to be a valuable tool for aiding decision makers and improving the productivity of enterprise processes, due to its ability to learn and find interesting patterns in the data. Thereby, it is possible to improve supply chains processes by using Machine Learning which generates in general better forecasts than the traditional approaches.

As such, this chapter examines multiple Machine Learning algorithms, explores their applications in the various supply chain processes, and presents a long short-term memory model for predicting the daily demand in a Moroccan supermarket.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackley, D., et al.: A learning algorithm for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Article  Google Scholar 

  2. Aksoy, A., Öztürk, N.: Supplier selection and performance evaluation in just-in-time production environments. Expert Syst. Appl. 38(5), 6351–6359 (2011)

    Article  Google Scholar 

  3. Alfian, G., et al.: Integration of RFID, wireless sensor networks, and data mining in an e-pedigree food traceability system. J. Food Eng. 212, 65–75 (2017)

    Article  Google Scholar 

  4. Arunraj, N.S., Ahrens, D.: A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting. Int. J. Prod. Econ. 170, 321–335 (2015)

    Article  Google Scholar 

  5. Azadnia, A.H., et al.: Sustainable supplier selection based on self-organizing map neural network and multi criteria decision making approaches. Procedia Soc. Behav. Sci. ICIBSoS 65, 879–884 (2012)

    Article  Google Scholar 

  6. Becker, T., et al.: Using an agent-based neural-network computational model to improve product routing in a logistics facility. Int. J. Prod. Econ. 174, 156–167 (2016)

    Article  Google Scholar 

  7. Becker, T., Intoyoad, W.: Context aware process mining in logistics. Procedia CIRP 63, 557–562 (2017)

    Article  Google Scholar 

  8. Bhattacharya, A., et al.: An intermodal freight transport system for optimal supply chain logistics. Transp. Res. Part C Emerg. Technol. 38, 73–84 (2014)

    Article  Google Scholar 

  9. Bocca, F.F., Rodrigues, L.H.A.: The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modelling. Comput. Electron. Agric. 128, 67–76 (2016)

    Article  Google Scholar 

  10. Bousqaoui, H., et al.: Machine learning applications in supply chains: an emphasis on neural network applications. In: 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech), pp. 1–7. IEEE (2017)

    Google Scholar 

  11. Broomhead, D.S., Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks (1988)

    Google Scholar 

  12. Budak, A., et al.: A forecasting approach for truckload spot market pricing. Transp. Res. Part A Policy Pract. 97, 55–68 (2017)

    Article  Google Scholar 

  13. Bukhari, D., et al.: Multilingual convolutional, long short-term memory, deep neural networks for low resource speech recognition. Procedia Comput. Sci. 107, 842–847 (2017)

    Article  Google Scholar 

  14. Campean, E.M., et al.: Aspects regarding some simulation models for logistic management. Procedia Econ. Finance 3, 1036–1041 (2012)

    Article  Google Scholar 

  15. Carpenter, G.A., et al.: Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw. 4(6), 759–771 (1991)

    Article  Google Scholar 

  16. Chen, M.K., et al.: Component selection system for green supply chain. Expert Syst. Appl. 39(5), 5687–5701 (2012)

    Article  Google Scholar 

  17. Cheng, J.H., et al.: A hybrid forecast marketing timing model based on probabilistic neural network, rough set and C4.5. Expert Syst. Appl. 37(3), 1814–1820 (2010)

    Article  MathSciNet  Google Scholar 

  18. Di Ciccio, C., et al.: Detecting flight trajectory anomalies and predicting diversions in freight transportation. Decis. Support Syst. 88, 1–17 (2016)

    Article  Google Scholar 

  19. Ćirović, G., et al.: Green logistic vehicle routing problem: routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Syst. Appl. 41(9), 4245–4258 (2014)

    Article  Google Scholar 

  20. de Cos Juez, F.J., et al.: Analysis of lead times of metallic components in the aerospace industry through a supported vector machine model. Math. Comput. Model. 52(7–8), 1177–1184 (2010)

    Article  Google Scholar 

  21. De’ath, G.: Boosted trees for ecological modeling and prediction. Ecology 88(1), 243–251 (2007)

    Article  Google Scholar 

  22. Dietterich, T.: Machine learning for sequential data: a review. In: Proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, 06–09 August 2002. LNCS, vol. 2396, pp. 15–30 (2002)

    Google Scholar 

  23. Efendigil, T., Önüt, S.: An integration methodology based on fuzzy inference systems and neural approaches for multi-stage supply-chains. Comput. Ind. Eng. 62(2), 554–569 (2012)

    Article  Google Scholar 

  24. Fasli, M., Kovalchuk, Y.: Learning approaches for developing successful seller strategies in dynamic supply chain management. Inf. Sci. (Ny) 181(16), 3411–3426 (2011)

    Article  Google Scholar 

  25. Ghasri, M., et al.: Hazard-based model for concrete pouring duration using construction site and supply chain parameters. Autom. Constr. 71, 283–293 (2016). Part 2

    Article  Google Scholar 

  26. Ghorbani, M., et al.: Applying a neural network algorithm to distributor selection problem. Procedia Soc. Behav. Sci. 41, 498–505 (2012)

    Article  Google Scholar 

  27. Goodfellow, I., et al.: Deep Learning. MIT Press (2015)

    Google Scholar 

  28. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: JMLR Workshop and Conference Proceedings, vol. 32, no. 1, pp. 1764–1772 (2014)

    Google Scholar 

  29. Grossberg, S.: Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions. Biol. Cybern. 23(4), 187–202 (1976)

    MATH  Google Scholar 

  30. Guanghui, W.: Demand forecasting of supply chain based on support vector regression method. Procedia Eng. 29, 280–284 (2012)

    Article  Google Scholar 

  31. Gumus, A.T., et al.: A new methodology for multi-echelon inventory management in stochastic and neuro-fuzzy environments. Int. J. Prod. Econ. 128(1), 248–260 (2010)

    Article  Google Scholar 

  32. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  33. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  MathSciNet  Google Scholar 

  34. Hornik, K., et al.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  35. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 2(3), 283–304 (1998)

    Article  Google Scholar 

  36. Jain, A.K., et al.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  37. Jaipuria, S., Mahapatra, S.S.: An improved demand forecasting method to reduce bullwhip effect in supply chains. Expert Syst. Appl. 41(5), 2395–2408 (2014)

    Article  Google Scholar 

  38. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  39. Kohonen, T.: Self-Organization and Associative Memory. Springer Series in Information Sciences (1988)

    Book  Google Scholar 

  40. Kone, E.R.S., Karwan, M.H.: Combining a new data classification technique and regression analysis to predict the cost-to-serve new customers. Comput. Ind. Eng. 61(1), 184–197 (2011)

    Article  Google Scholar 

  41. Kourounioti, I., et al.: Development of models predicting dwell time of import containers in port container terminals - an artificial neural networks application. Transp. Res. Procedia 14, 243–252 (2016)

    Article  Google Scholar 

  42. Kuo, R.J., et al.: Integration of artificial neural network and MADA methods for green supplier selection. J. Clean. Prod. 18(12), 1161–1170 (2010)

    Article  Google Scholar 

  43. Lee, C.K.M., et al.: Design and development of logistics workflow systems for demand management with RFID. Expert Syst. Appl. 38(5), 5428–5437 (2011)

    Article  Google Scholar 

  44. Liu, C., et al.: An improved grey neural network model for predicting transportation disruptions. Expert Syst. Appl. 45, 331–340 (2016)

    Article  Google Scholar 

  45. Liu, C., et al.: Short-term load forecasting using a long short-term memory network. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1–6. IEEE (2017)

    Google Scholar 

  46. Liwicki, M., et al.: A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks. In: Proceedings of the 9th International Conference on Document Analysis and Recognition, pp. 367–371 (2007)

    Google Scholar 

  47. Lu, L.X., Swaminathan, J.M.: Supply chain management. In: International Encyclopedia of the Social and Behavioral Sciences, pp. 709–713. Elsevier (2015)

    Chapter  Google Scholar 

  48. Ma, H., et al.: Automatic detection of false positive RFID readings using machine learning algorithms. Expert Syst. Appl. 91, 442–451 (2017)

    Article  Google Scholar 

  49. Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no. 233, pp. 281–297 (1967)

    Google Scholar 

  50. Mentzer, J.T., et al.: Defining supply chain management. J. Bus. Logist. 22(2), 1–25 (2001)

    Article  Google Scholar 

  51. Min, H.: Artificial intelligence in supply chain management: theory and applications. Int. J. Logist. Res. Appl. 13(1), 13–39 (2010)

    Article  MathSciNet  Google Scholar 

  52. Mocanu, E., et al.: Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 6, 91–99 (2016)

    Article  Google Scholar 

  53. Murray, P.W., et al.: Forecasting supply chain demand by clustering customers. IFAC Proc. 48(3), 1834–1839 (2015)

    Google Scholar 

  54. Niu, D., et al.: Short-term load forecasting using Bayesian neural networks learned by hybrid Monte Carlo algorithm. Appl. Soft Comput. 12(6), 1822–1827 (2012)

    Article  Google Scholar 

  55. Özkan, G., İnal, M.: Comparison of neural network application for fuzzy and ANFIS approaches for multi-criteria decision making problems. Appl. Soft Comput. 24, 232–238 (2014)

    Article  Google Scholar 

  56. Slimani, I., El Farissi, I., Achchab, S.: Artificial neural networks for demand forecasting: application using Moroccan supermarket data. In: 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA), Marrakech, pp. 266–271 (2015)

    Google Scholar 

  57. Sheremetov, L.B., et al.: Time series forecasting: applications to the upstream oil and gas supply chain. IFAC Proc. 46(9), 957–962 (2013)

    Article  Google Scholar 

  58. Sun, L., et al.: Supervised spectral-spatial hyperspectral image classification with weighted markov random fields. IEEE Trans. Geosci. Remote Sens. 53(3), 1490–1503 (2015)

    Article  Google Scholar 

  59. Tavana, M., et al.: A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection. Expert Syst. Appl. 61, 129–144 (2016)

    Article  Google Scholar 

  60. Thomassey, S.: Sales forecasts in clothing industry: the key success factor of the supply chain management. Int. J. Prod. Econ. 128(2), 470–483 (2010)

    Article  Google Scholar 

  61. Trapero, J.R., et al.: Impact of information exchange on supplier forecasting performance. Omega 40(6), 738–747 (2012)

    Article  Google Scholar 

  62. García, F.T., et al.: Intelligent system for time series classification using support vector machines applied to supply-chain. Expert Syst. Appl. 39(12), 10590–10599 (2012)

    Article  Google Scholar 

  63. Uriarte-Arcia, A.V., et al.: Data stream classification based on the gamma classifier. Math. Probl. Eng. 2015, 17 (2015)

    Article  Google Scholar 

  64. Vahdani, B., et al.: A locally linear neuro-fuzzy model for supplier selection in cosmetics industry. Appl. Math. Model. 36(10), 4714–4727 (2012)

    Article  MathSciNet  Google Scholar 

  65. Vhatkar, S., Dias, J.: Oral-care goods sales forecasting using artificial neural network model. Procedia Comput. Sci. 79, 238–243 (2016)

    Article  Google Scholar 

  66. Waibel, A., et al.: Phoneme recognition using time-delay neural networks. IEEE Trans. Acoust. 37(3), 328–339 (1989)

    Article  Google Scholar 

  67. Wong, W.K., Guo, Z.X.: A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. Int. J. Prod. Econ. 128(2), 614–624 (2010)

    Article  Google Scholar 

  68. Wu, Q.: Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system. J. Comput. Appl. Math. 233(10), 2481–2491 (2010)

    Article  MathSciNet  Google Scholar 

  69. Yin, Z., et al.: Forecast customer flow using long short-term memory networks. In: 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), pp. 61–66. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halima Bousqaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bousqaoui, H., Achchab, S., Tikito, K. (2019). Machine Learning Applications in Supply Chains: Long Short-Term Memory for Demand Forecasting. In: Zbakh, M., Essaaidi, M., Manneback, P., Rong, C. (eds) Cloud Computing and Big Data: Technologies, Applications and Security. CloudTech 2017. Lecture Notes in Networks and Systems, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-97719-5_19

Download citation

Publish with us

Policies and ethics