Skip to main content

Binding Number, Cycles, and Cliques

  • Chapter
  • First Online:
Graph Theory

Part of the book series: Problem Books in Mathematics ((PBM))

  • 2895 Accesses

Abstract

I discuss the binding number of a graph and Woodall’s conjecture that binding number at least 3∕2 implies a graph is pancyclic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Amar, E. Flandrin, I. Fournier, A. Germa, Pancyclism in Hamiltonian graphs. Discrete Math. 89, 111–131 (1991)

    Article  MathSciNet  Google Scholar 

  2. I. Anderson, Perfect matchings of a graph. J. Combin. Theory Ser. B 10, 183–186 (1971)

    Article  MathSciNet  Google Scholar 

  3. S. Brandt, Sufficient conditions for graphs to contain all subgraphs of a given type. Doctoral thesis, Freie Universität, Berlin, 1994

    MATH  Google Scholar 

  4. S. Brandt, Dense graphs with bounded clique number. Habilitation thesis, Freie Universität, Berlin, 2001

    Google Scholar 

  5. S. Brandt, R. Faudree, W. Goddard, Weakly pancyclic graphs. J. Graph Theory 27, 141–176 (1998)

    Article  MathSciNet  Google Scholar 

  6. C.C. Chen, G.P. Jin, K.M. Koh, Triangle-free graphs with large degree. Combin. Probab. Comput. 6, 381–396 (1997)

    Article  MathSciNet  Google Scholar 

  7. W.H. Cunningham, Computing the binding number of a graph. Discrete Appl. Math. 27, 283–285 (1990)

    Article  MathSciNet  Google Scholar 

  8. W. Goddard, The binding number of trees and K(1,  3)-free graphs. J. Combin. Math. Combin. Comput. 7, 193–200 (1990)

    MathSciNet  MATH  Google Scholar 

  9. W. Goddard, D.J. Kleitman, A note on maximal triangle-free graphs. J. Graph Theory 17, 629–631 (1993)

    Article  MathSciNet  Google Scholar 

  10. R.J. Gould, P.E. Haxell, A.D. Scott, A note on cycle lengths in graphs. Graphs Combin. 18, 491–498 (2002)

    Article  MathSciNet  Google Scholar 

  11. R. Häggkvist, Odd cycles of specified length in nonbipartite graphs, in Graph Theory (Cambridge, 1981). North-Holland Mathematical Studies, vol. 62 (North-Holland, Amsterdam, 1982), pp. 89–99

    Chapter  Google Scholar 

  12. Z. Hu, K.H. Law, W. Zang, An optimal binding number condition for bipancyclism. SIAM J. Discrete Math. 27, 597–618 (2013)

    Article  MathSciNet  Google Scholar 

  13. V.G. Kane, S.P. Mohanty, Binding number, cycles and complete graphs, in Combinatorics and Graph Theory (Calcutta, 1980). Lecture Notes in Mathematics, vol. 885 (Springer, Berlin, 1981), pp. 290–296

    Chapter  Google Scholar 

  14. V.G. Kane, S.P. Mohanty, R.S. Hales, Product graphs and binding number. Ars Combin. 11, 201–224 (1981)

    MathSciNet  MATH  Google Scholar 

  15. P. Katerinis, D.R. Woodall, Binding numbers of graphs and the existence of k-factors. Quart. J. Math. Oxford Ser. 38(2), 221–228 (1987)

    Article  MathSciNet  Google Scholar 

  16. J. Lyle, W. Goddard, The binding number of a graph and its cliques. Discrete Appl. Math. 157, 3336–3340 (2009)

    Article  MathSciNet  Google Scholar 

  17. E. Schmeichel, J. Mitchem, Bipartite graphs with cycles of all even lengths. J. Graph Theory 6, 429–439 (1982)

    Article  MathSciNet  Google Scholar 

  18. R. Shi, The binding number of a graph and its triangle. Acta Math. Appl. Sinica 2, 79–86 (1985)

    Article  Google Scholar 

  19. R. Shi, The binding number of a graph and its pancyclism. Acta Math. Appl. Sinica 3, 257–269 (1987)

    Article  Google Scholar 

  20. B. Sudakov, J. Verstraëte, Cycle lengths in sparse graphs. Combinatorica 28, 357–372 (2008)

    Article  MathSciNet  Google Scholar 

  21. D.R. Woodall, The binding number of a graph and its Anderson number. J. Combin. Theory Ser. B 15, 225–255 (1973)

    Article  MathSciNet  Google Scholar 

  22. V.E. Zverovich, The binding number of a random graph. Australas. J. Combin. 15, 271–275 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Goddard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goddard, W. (2018). Binding Number, Cycles, and Cliques. In: Gera, R., Haynes, T., Hedetniemi, S. (eds) Graph Theory. Problem Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-97686-0_3

Download citation

Publish with us

Policies and ethics