Binding Number, Cycles, and Cliques

  • Wayne GoddardEmail author
Part of the Problem Books in Mathematics book series (PBM)


I discuss the binding number of a graph and Woodall’s conjecture that binding number at least 3∕2 implies a graph is pancyclic.


  1. 1.
    D. Amar, E. Flandrin, I. Fournier, A. Germa, Pancyclism in Hamiltonian graphs. Discrete Math. 89, 111–131 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    I. Anderson, Perfect matchings of a graph. J. Combin. Theory Ser. B 10, 183–186 (1971)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Brandt, Sufficient conditions for graphs to contain all subgraphs of a given type. Doctoral thesis, Freie Universität, Berlin, 1994zbMATHGoogle Scholar
  4. 4.
    S. Brandt, Dense graphs with bounded clique number. Habilitation thesis, Freie Universität, Berlin, 2001Google Scholar
  5. 5.
    S. Brandt, R. Faudree, W. Goddard, Weakly pancyclic graphs. J. Graph Theory 27, 141–176 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    C.C. Chen, G.P. Jin, K.M. Koh, Triangle-free graphs with large degree. Combin. Probab. Comput. 6, 381–396 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    W.H. Cunningham, Computing the binding number of a graph. Discrete Appl. Math. 27, 283–285 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    W. Goddard, The binding number of trees and K(1,  3)-free graphs. J. Combin. Math. Combin. Comput. 7, 193–200 (1990)MathSciNetzbMATHGoogle Scholar
  9. 9.
    W. Goddard, D.J. Kleitman, A note on maximal triangle-free graphs. J. Graph Theory 17, 629–631 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R.J. Gould, P.E. Haxell, A.D. Scott, A note on cycle lengths in graphs. Graphs Combin. 18, 491–498 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Häggkvist, Odd cycles of specified length in nonbipartite graphs, in Graph Theory (Cambridge, 1981). North-Holland Mathematical Studies, vol. 62 (North-Holland, Amsterdam, 1982), pp. 89–99CrossRefGoogle Scholar
  12. 12.
    Z. Hu, K.H. Law, W. Zang, An optimal binding number condition for bipancyclism. SIAM J. Discrete Math. 27, 597–618 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    V.G. Kane, S.P. Mohanty, Binding number, cycles and complete graphs, in Combinatorics and Graph Theory (Calcutta, 1980). Lecture Notes in Mathematics, vol. 885 (Springer, Berlin, 1981), pp. 290–296CrossRefGoogle Scholar
  14. 14.
    V.G. Kane, S.P. Mohanty, R.S. Hales, Product graphs and binding number. Ars Combin. 11, 201–224 (1981)MathSciNetzbMATHGoogle Scholar
  15. 15.
    P. Katerinis, D.R. Woodall, Binding numbers of graphs and the existence of k-factors. Quart. J. Math. Oxford Ser. 38(2), 221–228 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Lyle, W. Goddard, The binding number of a graph and its cliques. Discrete Appl. Math. 157, 3336–3340 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    E. Schmeichel, J. Mitchem, Bipartite graphs with cycles of all even lengths. J. Graph Theory 6, 429–439 (1982)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Shi, The binding number of a graph and its triangle. Acta Math. Appl. Sinica 2, 79–86 (1985)CrossRefGoogle Scholar
  19. 19.
    R. Shi, The binding number of a graph and its pancyclism. Acta Math. Appl. Sinica 3, 257–269 (1987)CrossRefGoogle Scholar
  20. 20.
    B. Sudakov, J. Verstraëte, Cycle lengths in sparse graphs. Combinatorica 28, 357–372 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    D.R. Woodall, The binding number of a graph and its Anderson number. J. Combin. Theory Ser. B 15, 225–255 (1973)MathSciNetCrossRefGoogle Scholar
  22. 22.
    V.E. Zverovich, The binding number of a random graph. Australas. J. Combin. 15, 271–275 (1997)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Clemson UniversityClemsonUSA

Personalised recommendations