Skip to main content

Can Machines Design? An Artificial General Intelligence Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10999))

Abstract

Can machines design? Can they come up with creative solutions to problems and build tools and artifacts across a wide range of domains? Recent advances in the field of computational creativity and formal Artificial General Intelligence (AGI) provide frameworks towards machines with the general ability to design. In this paper we propose to integrate a formal computational creativity framework into the Gödel machine framework. We call the resulting framework design Gödel machine. Such a machine could solve a variety of design problems by generating novel concepts. In addition, it could change the way these concepts are generated by modifying itself. The design Gödel machine is able to improve its initial design program, once it has proven that a modification would increase its return on the utility function. Finally, we sketch out a specific version of the design Gödel machine which specifically aims at the design of complex software and hardware systems. Future work aims at the development of a more formal version of the design Gödel machine and a proof of concept implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boden, M.: Computer models of creativity. AI Mag. 30(3), 23 (2009)

    Article  Google Scholar 

  2. Bostrom, N.: Superintelligence: Paths, Dangers, Strategies. Oxford University Press, Oxford (2014)

    Google Scholar 

  3. Broy, M.: A logical basis for component-oriented software and systems engineering. Comput. J. 53(10), 1758–1782 (2010)

    Article  Google Scholar 

  4. Broy, M., Dederichs, F., Dendorfer, C., Fuchs, M., Gritzner, T.F., Weber, R.: The design of distributed systems: an introduction to focus. Technical report, Technische Universität München. Institut für Informatik (1992)

    Google Scholar 

  5. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless model-based development: from isolated tools to integrated model engineering environments. Proc. IEEE 98(4), 526–545 (2010)

    Article  Google Scholar 

  6. Cherti, M.: Deep generative neural networks for novelty generation: a foundational framework, metrics and experiments. Ph.D. thesis, Université Paris-Saclay (2018)

    Google Scholar 

  7. Colton, S., Goodwin, J., Veale, T.: Full-FACE poetry generation. In: ICCC, pp. 95–102 (2012)

    Google Scholar 

  8. Cope, D.: Computer Models of Musical Creativity. MIT Press, Cambridge (2005)

    Google Scholar 

  9. Elgammal, A., Papazoglou, M., Krämer, B.: Design for customization: a new paradigm for product-service system development. In: Procedia CIRP (2017)

    Google Scholar 

  10. Fallenstein, B., Soares, N.: Problems of self-reference in self-improving space-time embedded intelligence. In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI 2014. LNCS (LNAI), vol. 8598, pp. 21–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09274-4_3

    Chapter  Google Scholar 

  11. Gero, J.: Creativity, emergence and evolution in design. Knowl.-Based Syst. 9(7), 435–448 (1996)

    Article  Google Scholar 

  12. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für mathematik und physik 38(1), 173–198 (1931)

    Article  MathSciNet  Google Scholar 

  13. Goertzel, B.: Artificial general intelligence: concept, state of the art, and future prospects. J. Artif. Gen. Intell. 5(1), 1–48 (2014)

    Article  Google Scholar 

  14. Golden, B.: A unified formalism for complex systems architecture. Ph.D. thesis, École Polytechnique (2013)

    Google Scholar 

  15. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of semantics? Computer 37(10), 64–72 (2004)

    Article  Google Scholar 

  16. Haskins, C., Forsberg, K., Krueger, M.: INCOSE systems engineering handbook. In: International Council On Systems Engineering INCOSE (2007)

    Google Scholar 

  17. Hatchuel, A., Le Masson, P., Reich, Y., Weil, B.: A systematic approach of design theories using generativeness and robustness. In: Proceedings of the 18th International Conference on Engineering Design (ICED 11) (2011)

    Google Scholar 

  18. Hein, A.: Artificial intelligence probes for interstellar exploration and colonization. arXiv, arXiv:1612 (2016)

  19. Hein, A.M.: The greatest challenge: manned interstellar travel. In: Beyond the Boundary: Exploring the Science and Culture of Interstellar Spaceflight, pp. 349–376, Lulu (2014)

    Google Scholar 

  20. Hein, A.M., Pak, M., Pütz, D., Bühler, C., Reiss, P.: World ships-architectures & feasibility revisited. J. Br. Interplanetary Soc. 65(4), 119–133 (2012)

    Google Scholar 

  21. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: An algebraic view on the semantics of model composition. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA 2007. LNCS, vol. 4530, pp. 99–113. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72901-3_8

    Chapter  Google Scholar 

  22. Herzig, S.I.J., Brandstätter, M.: Applying software engineering methodologies to model-based systems engineering. In: Proceedings of 4th International Workshop on System & Concurrent Engineering for Space Applications SECESA (2010)

    Google Scholar 

  23. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, Heidelberg (2004). https://doi.org/10.1007/b138233

  24. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Labs Tech. J. 34(5), 1045–1079 (1955)

    Article  MathSciNet  Google Scholar 

  25. Muehlhauser, L.. Laurent Orseau on Artificial General Intelligence (2013)

    Google Scholar 

  26. Myhill, J.: The abstract theory of self-reproduction. In: Views on General Systems Theory, pp. 106–118 (1964)

    Google Scholar 

  27. Orseau, L., Ring, M.: Space-time embedded intelligence. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 209–218. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Orseau, L., Ring, M.: Self-modification and mortality in artificial agents. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830, pp. 1–10. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22887-2_1

    Chapter  Google Scholar 

  29. Rice, H.: Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc. 74(2), 358–366 (1953)

    Article  MathSciNet  Google Scholar 

  30. Riedl, M., Young, R.: Story planning as exploratory creativity: techniques for expanding the narrative search space. New Gener. Comput. 24(3), 303–323 (2006)

    Article  Google Scholar 

  31. Rigger, E., Shea, K., Stankovic, T.: Task categorisation for identification of design automation opportunities. J. Eng. Des. 29(3), 131–159 (2018)

    Article  Google Scholar 

  32. Ritchie, G.: The JAPE riddle generator: technical specification. Technical report (2003)

    Google Scholar 

  33. Russell, S., Dewey, D., Tegmark, M.: Research priorities for robust and beneficial artificial intelligence. AI Mag. 36(4), 105–114 (2015)

    Article  Google Scholar 

  34. Schmidhuber, J.: Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Sci. 18(2), 173–187 (2006)

    Google Scholar 

  35. Schmidhuber, J.: Ultimate cognition à la Gödel. Cogn. Comput. 1(2), 177–193 (2009)

    Google Scholar 

  36. Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Trans. Auton. Ment. Dev. 2(3), 230–247 (2010)

    Article  Google Scholar 

  37. Schmidhuber, J.: A formal theory of creativity to model the creation of art. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp. 323–337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31727-9_12

  38. Simon, H., Lea, G.: Problem solving and rule induction: a unified view (1974)

    Google Scholar 

  39. Simons, P.: Parts: A Study in Ontology. Oxford University Press, Oxford (1987)

    Google Scholar 

  40. Soares, N.: Formalizing two problems of realistic world-models. In: Technical report, Machine Intelligence Research Institute (2014)

    Google Scholar 

  41. Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, Cambridge (1992)

    Google Scholar 

  42. Wiggins, G.: A preliminary framework for description, analysis and comparison of creative systems. Knowl.-Based Syst. 19(7), 449–458 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas M. Hein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hein, A.M., Condat, H. (2018). Can Machines Design? An Artificial General Intelligence Approach. In: Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds) Artificial General Intelligence. AGI 2018. Lecture Notes in Computer Science(), vol 10999. Springer, Cham. https://doi.org/10.1007/978-3-319-97676-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97676-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97675-4

  • Online ISBN: 978-3-319-97676-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics