Skip to main content

A Computational Theory for Life-Long Learning of Semantics

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2018)

Abstract

Semantic vectors are learned from data to express semantic relationships between elements of information, for the purpose of solving and informing downstream tasks. Other models exist that learn to map and classify supervised data. However, the two worlds of learning rarely interact to inform one another dynamically, whether across types of data or levels of semantics, in order to form a unified model. We explore the research problem of learning these vectors and propose a framework for learning the semantics of knowledge incrementally and online, across multiple mediums of data, via binary vectors. We discuss the aspects of this framework to spur future research on this approach and problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 2787–2795. Curran Associates, Inc. (2013)

    Google Scholar 

  2. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: 25th Conference on Artificial Intelligence (AAAI), pp. 301–306 (2011)

    Google Scholar 

  3. Pereira da Silva, J.C., Freitas, A.: Towards an approximative ontology-agnostic approach for logic programs. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS, vol. 8367, pp. 415–432. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04939-7_21

    Chapter  Google Scholar 

  4. Freitas, A., Curry, E.: Natural language queries over heterogeneous linked data graphs: a distributional-compositional semantics approach. In: Proceedings of the 19th International Conference on Intelligent User Interfaces, pp. 279–288. ACM (2014)

    Google Scholar 

  5. Freitas, A., da Silva, J.C., ORiain, S., Curry, E.: Distributional relational networks. In: 2013 AAAI Fall Symposium Series (2013)

    Google Scholar 

  6. Gougoux, F., Zatorre, R.J., Lassonde, M., Voss, P., Lepore, F.: A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLOS Biol. 3(2), e27 (2005)

    Article  Google Scholar 

  7. Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cognit. Comput. 1(2), 139–159 (2009)

    Article  Google Scholar 

  8. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In: AAAI, pp. 2741–2749 (2016)

    Google Scholar 

  9. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990). https://doi.org/10.1109/5.58325

    Article  Google Scholar 

  10. Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Graph. (TOG) 32(6), 214 (2013)

    Google Scholar 

  11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013)

    Google Scholar 

  12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  13. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  14. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  15. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649–657 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sutor Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sutor, P., Summers-Stay, D., Aloimonos, Y. (2018). A Computational Theory for Life-Long Learning of Semantics. In: Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds) Artificial General Intelligence. AGI 2018. Lecture Notes in Computer Science(), vol 10999. Springer, Cham. https://doi.org/10.1007/978-3-319-97676-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97676-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97675-4

  • Online ISBN: 978-3-319-97676-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics