Skip to main content

Intermediate Conducting Layers in the Continental Earth’s Crust—Myths and Reality

  • Conference paper
  • First Online:
Book cover Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields
  • 434 Accesses

Abstract

The nature and scale of intermediate conducting layers propagation in the continental earth’s crust are discussed in this paper. The myth on the existence of intermediate conducting layers in the Earth’s crust at the depth of 10–20 km firstly appeared owing to results of the super-deep dipole-dipole sounding performed in the Gulf of Finland in 1946. Since then for the many decades a large number of anomalies of electrical conductivity in the earth’s crust have been detected. The authors of these studies interpreted the anomalies as the existence of intermediate (sub horizontal) conducting layers of fluidal (or temperature) origin at the depths of the first tens of kilometers, same as in the Gulf of Finland. But analysis of experimental data presented in the article allows to conclude that in most cases the anomalies of electrical conductivity in the Earth’s crust appears due to presence of a steeply dipping electronically conductive sulfide and carbon (graphite) bearing rocks of organic nature («SC-Layer» of Semenov). Fluids exist only in the uppermost part of the continental Earth’s crust in the depth interval from 2–3 to 7–10 km. They are detected as intermediate conductive area associated with the influence of dilatancy-diffusive processes and named as “DD-layer”. The nature of electrical conductivity anomalies in the Earth’s crust represents fundamental problem in the interpretation of the deep sounding data. Solution of the problem determines the role of crustal conductors in the study of geological structure and composition of the Earth’s interior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam A., (1974): Electric crustal anomalies in the Carpathian Basin and their origin in the rock composition. // Acta Geol. Hung. 18. Pp. 13–22.

    Google Scholar 

  • Blohm E.K., Worzyk P., Scriba H. (1977). Geoelectrical deep soundings in Southern Africa using the Cabora Bassa power line. // Journal of Geophysics, 43. Pp. 665–679.

    Google Scholar 

  • Cˇermak, V. & Lastovicˇkova, M. (1987). Temperature Profiles in the Earth of Importance to Deep Electrical conductivity Models. // Pageoph, vol. 125. Pp. 255–284.

    Google Scholar 

  • Fel’dman I.S & Zhamaletdinov AA. (2009). Fluid and thermal conductivity model of the lithosphere. // In: Proc. of Int. Conf. Apatity. Geological Institute of the KSC RAS. Pp. 100–107.

    Google Scholar 

  • Goryinov P.M.; Davidenko I.V. (1979). Tektonic- kesson effect in rocks and ore deposits – an important new phenomenon ingeodynamics. // Doklady FN USSR, Vol. 247, No 5. Pp. 1212–1215.

    Google Scholar 

  • Joedicke H. (1992). Water and graphite in the Earth’s crust —An approach to interpretation of conductivity models // Surveys in Geophysics, 13. Pp. 381–407.

    Google Scholar 

  • Jones A.G. (1987). MT and reflection: an assential comb. // Geophys. J.R. astr. Soc., N89. Pp.7–18.

    Google Scholar 

  • Keller G.V. (1963). Electrical properties in the deep crust. // IEE Trans. Antennas and Propagat., V. 11, N 3. Pp. 615–637.

    Google Scholar 

  • Kovtun A.A., Moiseev O.N., Vagin C.A., Vardanjants I.L., Kokvina E.L., Saveljev A.A., Uspensky N.I. (1986). MT- and AMT-sounding on the Kola peninsula and in Kareliya. // Deep electrical conductivity of the Baltic shield. Petrozavodsk. Karelian branch of RAS. Pp. 34–48.

    Google Scholar 

  • Kraev, A.P., Semenov, A.S., Tarkhov, A.G. (1947). Ultra-deep Electrical Sounding. // Razvedka Nedr, 1947, no. 3. Pp. 40–41.

    Google Scholar 

  • Lundholm R. (1946). The experimental sending of d.c. through the Earth in Sweden. // Proceedings of the Conf. Internat. des Grands Reseaux Electriques a Haute Teusion . Paper No 134

    Google Scholar 

  • Nikolaevsky V.N. (1996). Cataclastic breaking down of rocks of earth crust and anomaly of geophysical fields. // Izv. Akad. Nauk, Ser. Fiz. Zemlin No. 4, Pp. 41–50.

    Google Scholar 

  • Rokitjansky I.I. (1981). Inductive soundings of the Earth. // Kiev. Naukova Dumka. 296 p

    Google Scholar 

  • Rodkin M.F. (1993). The Role of a Deep Fluid Regime in Geodynamics and Seismotectonics // Moscow

    Google Scholar 

  • Semenov A.S. (1970). The Nature of Electrical Conductivity in the Ancient Basement. // Vestnik SPb Univ. No. 12. Pp. 19–26.

    Google Scholar 

  • Semenov A.S. & Zhamaletdinov A.A. (1981). Deep Electrical Soundings. // SPb. Vestn. Leningr. Univ., Ser. 7: Geol., Geogr., Vol. 3, No. 18. Pp. 5–11

    Google Scholar 

  • Vanyan L.L. (1997). Electromagnetic soundings. // Moscow. ”Nauchny Mir”. 218 p

    Google Scholar 

  • Varentsov Iv.M., Engels M., Korja T., Smirnov M.Yu. and the BEAR Working Group. (2002). The generalized geoelectric model. // Fizika Zemli, No. 10. Pp. 64–105.

    Google Scholar 

  • Vladimirov N.P. & Dmitriev V.I. (1972). Geoel. Sect. of crust and upper mantle in the Russian platform acc. to MTS. // Izvestiya Russ. Ac. of Sci. Phys. of the Solid Earth. No 6. Pp. 100–103.

    Google Scholar 

  • Yardley B.W.D. & Valley J.W. (1997). The petrologic case for a dry lower crust. // Journal of Geophysical Research, V. N B6. Pp. 12173–12185.

    Google Scholar 

  • Zhamaletdinov A.A. (1996). Graphite in the Earth’s Crust and Electrical Conductivity Anomalies. // Izvestiya, Physics of the Solid Earth, Vol. 32, No. 4. Pp. 272–288.

    Google Scholar 

  • Zhamaletdinov A.A. (1990). Model of electrical conductivity of lithosphere by results of studies with controlled sources (Baltic shield, Russian plateform). // Leningrad. “Nauka”. 159 p.

    Google Scholar 

  • Zhamaletdinov A.A., Shevtsov A.N., Tokarev A.D., Korja T., Pedersen L. Experiment on the Deep Frequency Sounding and DC Measurements in the Central Finland Granitoid Complex. // Electromagnetic Induction in the Earth. 14-th Workshop in Sinaia (Romania), 1998. P. 83

    Google Scholar 

  • Zhamaletdinov A.A., Shevtsov A.N., Tokarev A.D., and Korja T. (2002). EMFS of the Earth Crust beneath the CFGC // Izvestiya, Physics of the Solid Earth, Vol. 38, No. 11. P. 954–967.

    Google Scholar 

  • Zhamaletdinov A.A., Shevtsov A.N., T.G. Korotkova et al. (2011). Deep EM Sounding of the Lithosphere (FENICS). // Izvestiya, Physics of the Solid Earth. Vol. 47, No. 1. Pp. 2–22.

    Google Scholar 

  • Zhamaletdinov A.A, The Largest in the World Anomalies of Electrical Conductivity and their Nature - a review.// Global Journal of Earth Science and Engineering, 2014, 1, 84–96

    Article  Google Scholar 

  • Zhamaletdinov A. A., E. P. Velikhov, A. N. Shevtsov, V. V. Kolobov, V. E. Kolesnikov, A. A. Skorokhodov, T. G. Korotkova, V. V. Ivonin, P. A. Ryazantsev, and M. A. Biruly. The Kovdor-2015 Experiment: Study of the Parameters of a Conductive Layer of Dilatancy–Diffusion Nature (DD Layer) in the Archaean Crystalline Basement of the Baltic Shield. // Doklady Earth Sciences. 2017. Vol. 474. Part 2. pp. 641–645.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhamaletdinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhamaletdinov, A.A. (2019). Intermediate Conducting Layers in the Continental Earth’s Crust—Myths and Reality. In: Nurgaliev, D., Khairullina, N. (eds) Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-97670-9_40

Download citation

Publish with us

Policies and ethics