Skip to main content

Optimizing Space Exploration

  • Chapter
  • First Online:
  • 1604 Accesses

Part of the book series: Springer Praxis Books ((ASTRONOMY))

Abstract

Both robotic and human missions into space are necessary for an effective program of space exploration. For the nations that have sent humans into space (Russia, China, and the United States) the competition for limited budgets between human and robotic exploratory strategies is inevitable. Yet, the two strategies are complimentary and mutually supportive. Robotic missions are much cheaper than human missions. A major breakthrough in cost are so-called CubeSats—small spacecrafts generally of 10 × 10 × 10 cm dimensions with scaled-down miniaturized payloads (Loff and Dunbar 2017). Robotic missions will remain the best if not only way to investigate difficult to reach planetary bodies and to explore hostile environments such as the radiation-intense surfaces of the Jovian moons. Also, any initial mission to a planetary body will have to be robotic to understand the planetary environments, avoid unnecessary risks, and conduct space exploration in a cost-efficient way. However, eventually human missions are warranted on philosophical grounds and necessary on practical grounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amend, J.P., and E.L. Shock. 1998. Energetics of amino acid synthesis in hydro-thermal ecosystems. Science 281: 1659-1662.

    Article  ADS  Google Scholar 

  • Anderson, J.D., G. Schubert, R.A. Jacobson, et al. 1998. Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281: 2019-2022.

    ADS  Google Scholar 

  • Armstrong, J., L. Wells and G. Gonzalez. 2002. Rummaging through Earth’s attic for remains of ancient life. Icarus 160: 183-196.

    ADS  Google Scholar 

  • Baross, J.A., S.A. Benner, G.D Cody, S.D. Copley, N.R. Pace, and et al. 2007. The Limits of Organic Life in Planetary Systems. Washington, D.C.: National Academies Press.

    Google Scholar 

  • Boston, P.J. 2000. Bubbles in the rocks: Natural and artificial caves and cavities as life support structures. pp. 9-17 in R.M. Wheeler and C. Martin-Brennan, eds. Mars Greenhouses: Concepts and Challenges. NASA Tech. Mem 2000-208577, Kennedy Space Center, Florida.

    Google Scholar 

  • Boston, P.J. 2003. Extraterrestrial Caves. pp. 355-358. Encyclopedia of Cave and Karst Science. Fitzroy-Dearborn Publishers, Ltd., London.

    Google Scholar 

  • Boston, P.J., M.V. Ivanov and C.P. McKay. 1992. On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95: 300-308.

    Article  ADS  Google Scholar 

  • Boynton, W.V., W.C. Feldman, S.W. Squyres, et al. 2002. Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297: 81-85.

    ADS  Google Scholar 

  • Carr, M.H., M.J. Belton, C.R. Chapman, et al. 1998. Evidence for a subsurface ocean on Europa. Nature 391: 363-365.

    ADS  Google Scholar 

  • Chyba, C.F. 2000. Energy for microbial life on Europa. Nature 403: 381-382.

    Article  ADS  Google Scholar 

  • Clark, R.N. 2009. Detection of adsorbed water and hydroxyl on the Moon. Science 326: 562-564.

    ADS  Google Scholar 

  • Cockell, C.S., D. Catling, W.L. Davis, et al. 2000. The ultraviolet environment of Mars: biological implications past, present and future. Icarus 146: 343-359.

    Article  ADS  Google Scholar 

  • Cockell, C.S., A.C. Schuerger, D. Billi, et al. 2005. Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp 029. Astrobiology 5: 127-140.

    Article  ADS  Google Scholar 

  • Consolmagno, G.J., and J. Lewis. 1976. Structural and thermal models of icy Galilean satellites. pp. 1035-1051 in T. Gehrels, ed. Jupiter. Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Cousins, C. R. and I. A. Crawford. 2011. Volcano-ice interaction as a microbial habitat on Earth and Mars. Astrobiology 11: 695-710.

    Article  ADS  Google Scholar 

  • Davila, A.F., A.G. Fairén, A.P. Rodríguez, D. Schulze-Makuch, J. Rask, et al. 2015. The Hebrus Valles Exploration Zone: Access to the Martian surface and subsurface. First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars. Houston, Texas, USA, 26-30 October 2015.

    Google Scholar 

  • Davies, P., and D. Schulze-Makuch. 2008. A one-way human mission to Mars. Astrobiology 8: 310.

    Article  Google Scholar 

  • Dohm, J.M., J.C. Ferris, V.R. Baker, et al. 2001. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res. 106: 32943-32958.

    Article  ADS  Google Scholar 

  • Fairén, A.G., J.M. Dohm, T. Öner, et al. 2004. Updating the evidence of oceans on early Mars. Early Mars 2004 Conference, Jackson, Wyoming.

    Google Scholar 

  • Fairén, A.G. and D. Schulze-Makuch. 2013. The overprotection of Mars. Nature Geosci. 6: 510-511.

    Article  ADS  Google Scholar 

  • Fairén, A.G., V. Parro, D. Schulze-Makuch, and L. Whyte. 2017. Searching for life on Mars before it is too late. Astrobiology 17: 962-970.

    Article  ADS  Google Scholar 

  • Faulk, S.P., J.L. Mitchell, S. Moon, and J.M. Lora. 2017. Regional patterns of extreme precipitation on Titan consistent with observed alluvial fan distribution. Nature Geosci. doi:https://doi.org/10.1038/ngeo3043.

    Article  ADS  Google Scholar 

  • Feldman, W.C., W.V. Boynton, R.L. Tokar, et al. 2002. Global distribution of neutrons from Mars: Results from Mars Odyssey. Science 297: 75-78.

    Article  ADS  Google Scholar 

  • Figueredo, P.H., R. Greeley, S. Neuer, et al. 2003. Locating potential biosignatures on Europa from surface geology observations. Astrobiology 3: 879-897.

    Google Scholar 

  • Fink, W., J.M. Dohm, M.A. Tarbell, et al. 2005. Next-generation robotic planetary reconnaissance missions: a paradigm shift. Planet. Space Sci. 53: 1419-1426.

    Article  ADS  Google Scholar 

  • Formisano, V., S. Atreya, T. Encrenaz, et al. 2004. Detection of methane in the atmosphere of Mars. Science 306: 1758-1761.

    Article  ADS  Google Scholar 

  • Geissler, P.E., R. Greenberg, G. Hoppa, et al. 1998. Evidence for non-synchronous rotation of Europa. Galileo Imaging Team. Nature 391: 368-370.

    Article  ADS  Google Scholar 

  • Griffith, C.A., P. Penteado, K. Baines, P. Drossart, J. Barnes, et al. 2005. The evolution of Titan’s mid-latitude clouds. Science 310: 474-477.

    Article  ADS  Google Scholar 

  • Hoppa, G.V., B.R. Tufts, R. Greenberg, et al. 1999. Formation of cycloidal features on Europa. Science 285: 1899-1902.

    ADS  Google Scholar 

  • Horneck, G., R. Facius, M. Reichert, et al. 2003. HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part I: lunar missions Adv. Space Res. 31: 2389-2401.

    Article  ADS  Google Scholar 

  • Irwin, L.N., and D. Schultze-Makuch. 2003. Modeling putative multilevel ecosystems on Europa. Astrobiology 3: 813-821.

    ADS  Google Scholar 

  • Khurana, K.K., M.G. Kivelson, D.J. Stevenson, et al. 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395: 777-780.

    Article  ADS  Google Scholar 

  • Knollenberg, R.G., and D.M. Hunten. 1980. The microphysics of the clouds of venus: results of the pioneer venus particle size spectrometer experiment. J. Geophys. Res. 85: 8038-8058.

    ADS  Google Scholar 

  • Krasnopolski, V.A., J.P. Maillard and T.C. Owen. 2004. Detection of methane in the martian atmosphere: evidence for life? Icarus 172: 537-547.

    ADS  Google Scholar 

  • Lin, X., A. C. Yu, and T. F. Chan. 2017a. Efforts and challenges in engineering the genetic code. Life (Basel) 7: doi:https://doi.org/10.3390/life7010012.

    Google Scholar 

  • Lin, Y, E.J. Tronche, E.S. Streenstra, W. van Westrenen. 2017b. Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean. Nature Geosci. 10: 14-19.

    Article  ADS  Google Scholar 

  • Loff, S and B. Dunbar. 2017. CubeSats. NASA, 3 Aug 2017 [cited 17 Jan 2018]. Available from https://www.nasa.gov/mission_pages/cubesats/index.html .

  • Malin, M.C., and K.S. Edgett. 2000a. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288: 2330-2335.

    ADS  Google Scholar 

  • Malin, M.C., K.S. Edgett, L.V. Posiolova, et al. 2006. Present-day impact cratering rate and contemporary gully activity on Mars. Science 314: 1573-1577.

    Article  ADS  Google Scholar 

  • Mancinelli, P.L., and M. Klovstad. 2000. Martian soil and UV radiation: microbial viability assessment on spacecraft surfaces. Planet. Space Sci. 48: 1093-1097.

    Article  ADS  Google Scholar 

  • Matthewman, R., R.W. Court, I.A. Crawford, A.P. Jones, K.H. Joy, et al. 2015. The Moon as a recorder of organic evolution in the early Solar System: a lunar regolith analog study. Astrobiology 15: 154-168.

    Article  ADS  Google Scholar 

  • McKay, C.P. and H.D. Smith. 2005. Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178: 274-276.

    Article  ADS  Google Scholar 

  • Mitri, G., A.P. Showman, J.I. Lunine, et al. 2007. Hydrocarbon lakes on Titan. Icarus 186: 385-394.

    Article  ADS  Google Scholar 

  • Mitrofanov, I., D. Anfimov, A. Kozyrev, et al. 2002. Maps of subsurface hydrogen from the high-energy neutron detector, Mars Odyssey. Science 297: 78-81.

    Article  ADS  Google Scholar 

  • Mumma, M.J., R.E. Novak, M.A. DiSanti, et al. 2004. Detection and mapping of methane and water on Mars. Bull. Amer. Astronom. Soc. 36: 1127.

    ADS  Google Scholar 

  • Needham, D.H. and D.A. Kring. 2017. Lunar volcanism produced a transient atmosphere around the ancient Moon. Earth Planet. Sci. Lett. 478: 175-178.

    Article  ADS  Google Scholar 

  • Patel, M.R., A. Bérces, C. Kolb, et al. 2003. Seasonal and diurnal variations in Martian surface ultraviolet irradiation: biological and chemical implications for the Martian regolith. Int. J. Astrobiology 2: 21-34.

    Article  ADS  Google Scholar 

  • Pieters, C.M., J.N. Goswami, R.N. Clark, M. Annadurai, J. Boardman. 2009. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326: 568-572.

    Article  ADS  Google Scholar 

  • Rummel, J.D. and C.A Conley. 2017. Four Fallacies and an oversight: searching for Martian life. Astrobiology 17: 971-974.

    Article  ADS  Google Scholar 

  • Schuerger, A.C., R.L. Mancinelli, R.G. Kern, et al. 2003. Survival of Bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus 165: 253-276.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D. 2013. Organic molecules in lunar ice: a window to the early evolution of life on Earth. In Habitability on other Planets and Satellites edited by J. Seckbach and J.-P. d. Vera. Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Schulze-Makuch, D., and D.H. Grinspoon. 2005. Biologically Enhanced Energy and Carbon Cycling on Titan? Astrobiology 5: 560-567.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D., L.N. Irwin and T. Irwin. 2002b. Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus. pp. 247-250. 2nd European Workshop on Exo-Astrobiology (EANA/ESA),

    Google Scholar 

  • Schulze-Makuch, D., L.N. Irwin, J.H. Lipps, D. LeMone, J.M. Dohm, and A.G. Fairén. 2005a. Scenarios for the evolution of life on Mars. J. Geophys. Res. - Planets 110:E12S23.

    Google Scholar 

  • Schulze-Makuch, D., J.M. Dohm, A.G. Fairén, et al. 2005b. Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs. Astrobiology 5: 778-795.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D., J.M. Dohm, C. Fan, et al. 2007. Exploration of hydrothermal targets on Mars. Icarus 189: 308-324.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D. and I. Crawford. 2018. Was there an early habitability window for our Moon? Astrobiology18: 985-988.

    Google Scholar 

  • Shapiro, R.S. and D. Schulze-Makuch. 2009. The search for alien life in our solar system: strategies and priorities. Astrobiology 9: 335-343.

    Article  ADS  Google Scholar 

  • Sittler, E.C., J.F. Cooper, P. Mahaffy, J. Esper, D. Fairbrother, et al. 2006. Titan Orbiter with Aerorover Mission (TOAM). Proceedings of the 4th International Planetary Probe Workshop, Pasadena, CA.

    Google Scholar 

  • Special Regions Science Analysis Group. 2006. Findings of the Mars special regions science analysis group. Astrobiology 6: 677-673.

    Article  ADS  Google Scholar 

  • Special Regions Science Analysis Group. 2007. COSPAR Colloquium on Mars Special Regions held from September 11-13, Rome, Italy.

    Google Scholar 

  • Stofan, E.R., C. Elachi, J.I. Lunine, R.D. Lorenz, B. Stiles, et al. 2007. The lakes of Titan. Nature 445: 61-64.

    Article  ADS  Google Scholar 

  • Sunshine, J.M., T.L. Farnham, L.M. Feaga, O. Groussin, F. Merlin, et al. 2009. Temporal and spatial variability of lunar hydration as observed by the Deep Impact spacecraft. Science 326: 565-568.

    Article  ADS  Google Scholar 

  • Toon, O.B., C.P. McKay, R. Courtin, et al. 1988. Methane rain on Titan. Icarus 75: 255-284.

    Article  ADS  Google Scholar 

  • Vinogradov, M.E., A.L. Vereshchaka and E.A. Shushkina. 1996. Vertical structure of the zooplankton communities in the oligotrophic areas of the northern Atlantic, and influence of the hydrothermal vent. Okeanologiya 36 71-79.

    Google Scholar 

  • Webster, C.R., P.R. Mahaffy, S.K. Atreya, G.J. Flesch, M.A. Mischna, et al. 2015. Mars methane detection and variability at Gale crater. Science 347: 415-417.

    Article  ADS  Google Scholar 

  • Zolotov, M.Y., and E.L. Shock. 2003. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. Journal of Geophysical Research-Planets 108: art. no.-5022.

    Google Scholar 

  • Zubrin, R., and R. Wagner. 1996. The Case for Mars: The Plan to Settle the Red Planet and Why We Must. The Free Press, New York, N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze-Makuch, D., Irwin, L.N. (2018). Optimizing Space Exploration. In: Life in the Universe. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-97658-7_16

Download citation

Publish with us

Policies and ethics