Skip to main content

The Future and Fate of Living Systems

  • Chapter
  • First Online:
  • 1556 Accesses

Part of the book series: Springer Praxis Books ((ASTRONOMY))

Abstract

The future of life on Earth and elsewhere in the Universe is the least studied of the three fundamental questions posed by NASA’s Astrobiology Roadmap (Des Marais and Walter 1999; Des Marais et al. 2003, 2008). A lack of focus on this question raises two concerns. First, in a sense, the future of life is the question that has the greatest practical significance, since an ability to anticipate the consequences of human actions for the biosphere on Earth and wherever humans may come in contact with alien life in the future, should be a critical consideration in formulating policies for human activities on Earth at present and exploratory strategies for the future. The only one of the Roadmap’s seven Goals and Objectives (#6) that relates to the future of life focuses narrowly on the fate of ecosystems and the evolution of microbes on Earth and in alien environments. The biosphere is now being changed so rapidly by anthropogenic forces, though, that the bigger and more immediate question is the general fate of groups of organisms, including especially those with the greatest environmental impact (Tong 2000; Woodruff 2001). This might also include an alteration of the genetic code (Xue and Wong 2017), intended or unintended. Secondly, on planetary systems older than the Solar System, there is little reason to doubt that life has emerged in some cases, and therefore had longer to evolve than on Earth. The question may then be asked whether the history of life on Earth provides insights into the fate of living systems that have had longer to unfold.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altermann, W., and J.W. Schopf. 1995. Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Res. 75: 65-90.

    Article  ADS  Google Scholar 

  • Altermann, W., and J. Kazmierczak. 2003. Archean microfossils: a reappraisal of early life on Earth. Res. Microbiol. 154: 611-617.

    Article  Google Scholar 

  • Bajpai, S. and P.D. Gingerich. 1998. A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales. Proc. Natl. Acad. Sci. USA 95: 15464-15468.

    Article  ADS  Google Scholar 

  • Barnosky, A.D., P.L. Koch, R.S. Feranec, et al. 2004. Assessing the causes of late Pleistocene extinctions on the continents. Science 306: 70-75.

    Article  ADS  Google Scholar 

  • Beck, C.H.M. and L.N. Irwin. 2016. The Evolutionary Imperative: Why Change Happens, Where It Leads, and How We Might Survive. Vancouver, B.C.: CCB Publishing. [https://www.amazon.com/Evolutionary-Imperative-Change-Happens…/B01NGZ8ZJF]

  • Bostrom, N. 2003. Are you living in a computer simulation? Philosoph. Quart. 53: 243-255.

    Google Scholar 

  • Brady, S.G. 2003. Evolution of the army ant syndrome: the origin and long-term evolutionary stasis of a complex of behavioral and reproductive adaptations. Proc. Natl. Acad. Sci. USA 100: 6575-6579.

    Article  ADS  Google Scholar 

  • Braje, T.J. and J.M. Erlandson. 2013. Human acceleration of animal and plant extinctions: A Late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 4: 14-23.

    Article  Google Scholar 

  • Brook, B.W., and D.M. Bowman. 2002. Explaining the Pleistocene megafaunal extinctions: models, chronologies, and assumptions. Proc. Natl. Acad. Sci. USA 99: 14624-14627.

    Article  ADS  Google Scholar 

  • Byrne, R. 1995. The Thinking Ape: Evolutionary Origins of Intelligence. Oxford Univ. Press, New York.

    Book  Google Scholar 

  • Campbell, N.A. 1996. Biology Benjamin/Cummings, Menlo Park, CA.

    Google Scholar 

  • Chyba, C.F., and G.D. McDonald. 1995. The origin of life in the solar system: current Issues. Ann. Rev. Earth Planet. Sci. 23: 215-249.

    Article  ADS  Google Scholar 

  • Clark, A. 2003. Natural-Born Cyborgs: Minds, Technologies, and the Future of Human Intelligence. Oxford Univ Press, New York.

    Google Scholar 

  • Cowen, R. 1995. History of life. Blackwell, Boston.

    Google Scholar 

  • Des Marais, D.J., and M.R. Walter. 1999. Astrobiology: Exploring the origins, evolution, and distribution of life in the Universe. Annu. Rev. Ecol. Syst. 30: 397-420.

    Article  Google Scholar 

  • Des Marais, D.J., L. Allamandola, S. Benner, A. Boss, J.R. Cronin, et al. 2003. The NASA Astrobiology Roadmap. Astrobiology 3: 219-235.

    Article  ADS  Google Scholar 

  • Des Marais, D.J., J.A. Nuth, L.J. Allamandola, A.P. Boss, J.D. Farmer, et al. 2008. The NASA Astrobiology Roadmap. Astrobiology 8: 715-730.

    Article  ADS  Google Scholar 

  • Diniz-Filho, J.A. 2004. Macroecological analyses support an overkill scenario for late Pleistocene extinctions. Braz J Biol 64: 407-414.

    Article  Google Scholar 

  • Eldredge, N., and S.J. Gould. 1972. Punctuated equilibria: an alternative to phyletic gradualism. pp. 82-115 in T.J.M. Schopf, ed. Models in Paleobiology. Freeman, Cooper, and Co., San Francisco.

    Google Scholar 

  • Eldredge, N. 1985. Time Frames: The Rethinking of Darwinian Evolution and the Theory of Punctuated Equilibrium. Simon and Schuster, New York.

    Google Scholar 

  • Elena, S.F., and R.E. Lenski. 2003. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Rev. Genet. 4: 457-469.

    Article  Google Scholar 

  • Grimaldi, D., and D. Agosti. 2000. A formicine in New Jersey cretaceous amber (Hymenoptera: formicidae) and early evolution of the ants. Proc. Natl. Acad. Sci. USA 97: 13678-13683.

    Article  ADS  Google Scholar 

  • Grinspoon, D.H. 1997. Venus Revealed: A New Look Below the Clouds of Our Mysterious Twin Planet. Perseus Publishing, Cambridge, Massachusetts.

    Google Scholar 

  • Grinspoon, D.H. 2003. Lonely Planets: The Natural Philosophy of Alien Life. HarperCollins, New York.

    Google Scholar 

  • Hawkins, J., and S. Blakeslee. 2005. On Intelligence. Henry Holt, New York.

    Google Scholar 

  • Herman, L. 1986. Cognition and language competencies of bottlenosed dolphins. pp. 221-252 in R. Schusterman, J. Thomas and F. Wood, eds. Dolphin Cognition and Behaviour: A Comparative Approach. Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Hof, P.R., R. Chanis and L. Marino. 2005. Cortical complexity in cetacean brains. Anat Rec A Discov Mol Cell Evol Biol 287: 1142-1152.

    Article  Google Scholar 

  • Hueber, F.M. 1961. Hepaticites devonicus: a new fossil liverwort from the Devonian of New York. Annals Missouri Bot. Garden 48: 125-132.

    Article  Google Scholar 

  • Irwin, L.N., and D. Schulze-Makuch. 2001. Assessing the plausibility of life on other worlds. Astrobiology 1: 143-160.

    Article  ADS  Google Scholar 

  • Irwin, L.N. and D Schulze-Makuch. 2008. Inferences from the independent, infrequent, and underutilized evolution of intelligence on Earth. Astrobiology 8: 391.

    Google Scholar 

  • Irwin, L.N., and D. Schulze-Makuch. 2011. Cosmic Biology: How Life Could Evolve on Other Worlds. New York: Praxis.

    Book  Google Scholar 

  • Irwin, L.N., A. Méndez, A.G. Fairén, and D. Schulze-Makuch. 2014. Assessing the possibility of biological complexity on other worlds, with an estimate of the occurrence of complex life in the Milky Way galaxy. Challenges 214 (5): 159-174.

    Article  ADS  Google Scholar 

  • Jablonka, E., and M.J. Lamb. 2006. The evolution of information in the major transitions. J. Theor. Biol. 239: 236-246.

    Article  MathSciNet  Google Scholar 

  • Jerison, H. 1973. Evolution of the Brain and Intelligence. Academic Press, London.

    Google Scholar 

  • Johnson, C.N. 2002. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc Biol Sci 269: 2221-2227.

    Article  Google Scholar 

  • Kaifu, Y., H. Baba, F. Aziz, et al. 2005. Taxonomic affinities and evolutionary history of the Early Pleistocene hominids of Java: dentognathic evidence. Am J Phys Anthropol 128: 709-726.

    Article  Google Scholar 

  • Karssilov, V.A., and R.M. Schuster. 1984. Paleozoic and Mesozoic fossils. pp. 1172-1193 in R.M. Schuster, ed. New Manual of Bryology. The Hattori Botanical Garden.

    Google Scholar 

  • Krenz, J.G., G.J.P. Naylor, H.B. Shaffer, et al. 2005. Molecular phylogenetics and evolution of turtles. Molecular Phylogenetics and Evolution 37: 178-191.

    Article  Google Scholar 

  • Landman, N. 1987. Nautilus: The Biology and Paleobiology of a Living Fossil. Plenum Press, New York.

    Google Scholar 

  • Lilly, J. 1978. Communication between Man and Dolphin: The Possibilities of Talking with Other Species. Crown Publishers, New York.

    Google Scholar 

  • Lisney, T.J., and S.P. Collin. 2006. Brain morphology in large pelagic fishes: a comparison between sharks and teleosts. Journal of Fish Biology 68: 532-554.

    Article  Google Scholar 

  • Lwoff, A. 1962. Biological Order. M.I.T. Press, Cambridge.

    Google Scholar 

  • Margulis, L., and D. Sagan. 1995. What Is Life? Simon & Schuster, New York.

    Google Scholar 

  • McBrearty, S., and A.S. Brooks. 2000. The revolution that wasn’t: a new interpretation of the origin of modern human behavior. J Hum Evol 39: 453-563.

    Article  Google Scholar 

  • McKay, C.P. and W.L. Davis. 1999. Planets and the origin of life. pp. 899-922 in P.R. Weissman, McFadden L.-A. and T.V. Johnson, eds. Encyclopedia of the Solar System. Academic Press, New York.

    Google Scholar 

  • McKay, C.P. and H.D. Smith. 2005. Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178: 274-276.

    Article  ADS  Google Scholar 

  • Méndez, A. 2015. Exoplanets Catalogue - Planetary Habitability Laboratory: University of Puerto Rico at Arecibo.[http://phl.upr.edu/projects/habitable-exoplanets-catalog/stats].

    Google Scholar 

  • Miller, R.F., R. Cloutier and S. Turner. 2003. The oldest articulated chondrichthyan from the Early Devonian period. Nature 425: 501-504.

    Article  ADS  Google Scholar 

  • Moreau, C.S., C.D. Bell, R. Vila, et al. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312: 101-104.

    Article  ADS  Google Scholar 

  • Mueller, U.G., S.A. Rehner and T.R. Schultz. 1998. The evolution of agriculture in ants. Science 281: 2034-2038.

    Article  ADS  Google Scholar 

  • Pritchard, P. 1979. Encyclopedia of Turtles. T.F.H., Jersey City, NJ.

    Google Scholar 

  • Remmert, H. 1982. The evolution of man and the extinction of animals. Naturwissenschaften 69: 524-527.

    Article  ADS  Google Scholar 

  • Reznick, D.N., and C.K. Ghalambor. 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution Genetica 112: 183-198.

    Google Scholar 

  • Schopf, J.W., A.B. Kudryavtsev, M.R. Walter, M.J. Van Kranendonk, K.H. Williford, et al. 2014. Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution’s null hypothesis. Proc. Nat. Acad. Sci. USA 112: 2087–2092.

    Article  ADS  Google Scholar 

  • Schultz, T.R. 2000. In search of ant ancestors. Proc. Natl. Acad. Sci. USA 97: 14028-14029.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D. 2002. At the crossroads between microbiology and planetology: a proposed iron cycle could sustain life in an ocean – and the ocean need not be on Earth. ASM News 68: 364-365.

    Google Scholar 

  • Schulze-Makuch, D., and D.H. Grinspoon. 2005. Biologically Enhanced Energy and Carbon Cycling on Titan? Astrobiology 5: 560-567.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D., D.H. Grinspoon, O. Abbas, et al. 2004. A sulfur-based UV adaptation strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 4: 11-18.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D., L.N. Irwin, J.H. Lipps, D. LeMone, J.M. Dohm, and A.G. Fairén. 2005a. Scenarios for the evolution of life on Mars. J. Geophys. Res. - Planets 110:E12S23.

    Google Scholar 

  • Schulze-Makuch, D., J.M. Dohm, A.G. Fairén, et al. 2005b. Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs. Astrobiology 5: 778-795.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D. and L.N. Irwin. 2006. Exotic forms of life in the universe. Naturwissenschaften 93: 155-172.

    Article  ADS  Google Scholar 

  • Schulze-Makuch, D., and W. Bains. 2017. The Cosmic Zoo: Complex Life on Many Worlds. Chichester, U.K.: Springer Praxis.

    Chapter  Google Scholar 

  • Searle, J. 1984. Minds, Brains, and Science. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Speers-Roesch, B., J.W. Robinson and J.S. Ballantyne. 2006. Metabolic organization of the spotted ratfish, Hydrolagus colliei (Holocephali: Chimaeriformes): insight into the evolution of energy metabolism in the chondrichthyan fishes. J. Exp. Zool. A Comp. Exp. Biol. 305: 631-644.

    Article  Google Scholar 

  • Szathmary, E., and J.M. Smith. 1995. The major evolutionary transitions. Nature 374: 227-232.

    Article  ADS  Google Scholar 

  • Tong, S. 2000. The potential impact of global environmental change on population health. Australian New Zealand J. Med. 30: 618-625.

    Article  Google Scholar 

  • Ward, P. 2001. Future Evolution. W. H. Freeman.

    Google Scholar 

  • Ward, P.D., and D. Brownlee. 2000. Rare Earth: Why Complex Life Is Uncommon in the Universe. Springer-Verlag, New York.

    Google Scholar 

  • Wilson, E. 1980. Sociobiology. Harvard Univ Press, Cambridge.

    Google Scholar 

  • Woodruff, D.S. 2001. Declines of biomes and biotas and the future of evolution. Proc. Natl. Acad. Sci. USA 98: 5471-5476.

    Article  ADS  Google Scholar 

  • Xia, X. 2000. Phylogenetic relationship among horseshoe crab species: effect of substitution models on phylogenetic analyses. Syst Biol 49: 87-100.

    Article  Google Scholar 

  • Xue, H. and T.-F. Wong. 2017. Future of the genetic code. Life 7: 10, doi:https://doi.org/10.3390/life7010010.

    Article  Google Scholar 

  • Young, J. 1964. A Model of the Brain. Oxford Univ Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze-Makuch, D., Irwin, L.N. (2018). The Future and Fate of Living Systems. In: Life in the Universe. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-97658-7_14

Download citation

Publish with us

Policies and ethics