Skip to main content

Imaging in Patellofemoral Pain

  • Chapter
  • First Online:
Patellofemoral Pain and Instability
  • 1220 Accesses

Abstract

Anatomic function of the patellofemoral compartment requires congruency and synergy of its osseous and soft tissue components. At different degrees of flexion, various components provide the main stabilizing force protecting against lateral patellar maltracking. Knowing the anatomy allows for a better understanding of patterns of injury seen on imaging (e.g., lateral trochlear bone contusion seen with transient lateral patellar dislocations). Anatomic variants can predispose to particular pathologies and outcomes, and some of these variants can be associated with pain (e.g., trochlear dysplasia), while others are typically not (e.g., bipartite patella).

When imaging the patellofemoral joint, a radiographic series is the best initial examination to evaluate the osseous structures and their relationships and to form an impression of what soft tissue injuries may be present given secondary findings. Axial radiographic views allow for evaluation of patellar alignment, position, and joint space, while MRI offers excellent visualization of soft tissue and cartilage.

Specific causes of patellofemoral pain can be broadly split into three categories: (1) acute trauma, (2) overuse injuries ± anatomic issues, and (3) arthritis, all of which can be evaluated with imaging. Some causes of patellofemoral pain, such as fat pad impingement syndrome, patellofemoral overload syndrome, and chondral/osteochondral abnormalities, are best imaged with MRI. Others, such as patellofemoral osteoarthritis and chronic overuse injuries like Osgood-Schlatter syndrome and Sinding-Larsen-Johansson syndrome, are evaluated on radiographs. Advanced cartilage imaging techniques such as T1 rho mapping, T2 mapping, and dGEMRIC (delayed gadolinium-enhanced magnetic resonance imaging of cartilage) can evaluate cartilage ultrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antinolfi P, Bartoli M, Placella G, et al. Acute patellofemoral instability in children and adolescents. Joints. 2016;4(1):47–51.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Askenberger M, Janarv PM, Finnbogason T, et al. Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med. 2017;45(1):50–8.

    Article  PubMed  Google Scholar 

  3. Black BR, Chong le R, Potter HG. Cartilage imaging in sports medicine. Sports Med Arthrosc. 2009;17(1):68–80.

    Article  PubMed  Google Scholar 

  4. Boutin RD, Januario JA, Newberg AH. MR imaging features of osteochondritis dissecans of the femoral sulcus. AJR Am J Roentgenol. 2003;180(3):641–5.

    Article  PubMed  Google Scholar 

  5. Caton J, Deschamps G, Chambat P. Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot. 1982;68(5):317–25.

    CAS  PubMed  Google Scholar 

  6. Chiang H, Liao CJ, Hsieh CH. Clinical feasibility of a novel biphasic osteochondral composite for matrix-associated autologous chondrocyte implantation. Osteoarthr Cartil. 2013;21(4):589–98.

    Article  CAS  PubMed  Google Scholar 

  7. Choi YS, Cohen NA, Potter HG. Magnetic resonance imaging in the evaluation of osteochondritis dissecans of the patella. Skelet Radiol. 2007;36(10):929–35.

    Article  Google Scholar 

  8. Crema MD, Roemer FW, Marra MD. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31(1):37–61.

    Article  PubMed  Google Scholar 

  9. Davies AP, Vince AS, Shepstone L, et al. The radiologic prevalence of patellofemoral osteoarthritis. Clin Orthop Relat Res. 2002;402:206–12.

    Article  Google Scholar 

  10. Dejour H, Walch G, Neyret P, et al. Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot. 1990;76:45–54.

    CAS  PubMed  Google Scholar 

  11. Dejour H, Walch G, Nove-Josserand L, et al. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  12. Dejour D, Reynaud P, Lecoultre B. Douleurs et instabilite rotulienne: Essai de classification. Med Hyg. 1998;56:1466–71.

    Google Scholar 

  13. Dejour D, Saggin P. The sulcus deepening trochleoplasty—the Lyon’s procedure. Int Orthop. 2010;34(2):311–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Smet AA, Fisher DR, Graf BK, et al. Osteochondritis dissecans of the knee: value of MR imaging in determining lesion stability and the presence of articular cartilage defects. AJR Am J Roentgenol. 1990;155:549–53.

    Article  PubMed  Google Scholar 

  15. De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skelet Radiol. 1996;25:159–63.

    Article  Google Scholar 

  16. Dunn TC, Lu Y, Jin H, Ries MD, et al. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Eagle S, Potter HG, Koff MF. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J Orthop Res. 2016;35(3):412–23.

    Article  PubMed  Google Scholar 

  18. Endo Y, Shubin Stein BE, Potter HG. Radiologic assessment of patellofemoral pain in the athlete. Sports Health. 2011;3:195–210.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Faletti C, De Stefano N, Giudice G, et al. Knee impingement syndromes. Eur J Radiol. 1998;27(Suppl 1):S60–9.

    Article  PubMed  Google Scholar 

  20. Grawe B, Shubin Stein B. Tibial tubercle osteotomy: indication and techniques. J Knee Surg. 2015;28(4):279–84.

    Article  PubMed  Google Scholar 

  21. Grelsamer RP, Proctor CS, Bazos AN. Evaluation of patellar shape in the sagittal plane. A clinical analysis. Am J Sports Med. 1994;22:61.

    Article  CAS  PubMed  Google Scholar 

  22. Gustas CN, Blankenbaker DG, Rio AM, et al. Evaluation of the articular cartilage of the knee joint using an isotropic resolution 3D fast spin-echo sequence with conventional and radial reformatted images. AJR Am J Roentgenol. 2015;205:371–9.

    Article  PubMed  Google Scholar 

  23. Heyse TJ, Figiel J, Hähnlein U, Timmesfeld N, Lakemeier S, Schofer MD, Fuchs-Winkelmann S, Efe T. MRI after patellofemoral replacement: the preserved compartments. Eur J Radiol. 2012;81(9):2313–7.

    Article  PubMed  Google Scholar 

  24. Hong E, Kraft MC. Evaluating anterior knee pain. Med Clin N Am. 2014;98:697–717.

    Article  PubMed  Google Scholar 

  25. Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI osteoarthritis knee score). Osteoarthr Cartil. 2011;19(8):990–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Insall J, Salvati E. Patella position in the normal knee joint. Radiology. 1971;101:101–4.

    Article  CAS  PubMed  Google Scholar 

  27. Kavanagh EC, Zoga A, Omar I, et al. MRI findings in bipartite patella. Skelet Radiol. 2007;36:209–14.

    Article  Google Scholar 

  28. Kijowski R, Blankenbaker DG, Shinki K, et al. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology. 2008;248(2):571–8.

    Article  PubMed  Google Scholar 

  29. Kim T-H, Sobti A, Lee S-H, et al. The effects of weight-bearing conditions on patellofemoral indices in individuals without and with patellofemoral pain syndrome. Skelet Radiol. 2014;43(2):157–64.

    Article  Google Scholar 

  30. LaPrade RF, Cram TR, James EW, et al. Trochlear dysplasia and the role of trochleoplasty. Clin Sports Med. 2014;33(3):531–45.

    Article  PubMed  Google Scholar 

  31. Laurin CA, Dussault R, Levesque HP. The tangential x-ray investigation of the patellofemoral joint: x-ray technique, diagnostic criteria and their interpretation. Clin Orthop Relat Res. 1979;144:16–26.

    Google Scholar 

  32. Li X, Benjamin Ma C, Link TM. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthr Cartil. 2007;15(7):789–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matzat SJ, van Tiel J, Gold GE, et al. Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg. 2013;3(3):162–74.

    PubMed  PubMed Central  Google Scholar 

  34. McAlindon TE, Snow S, Cooper C, et al. Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis. 1992;51(7):844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McIlvain GE, Lavender CD, Boukhemis KW. Bilateral Osteochondritis Dissecans in a 16-year-old female basketball player. Int J Athl Ther Train. 2013;18(4):23–7.

    Article  Google Scholar 

  36. Merchant AC, Mercer RL, Jacobsen RH, et al. Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am. 1974;56:1391–6.

    Article  CAS  PubMed  Google Scholar 

  37. Obedian RS, Grelsamer RP. Osteochondritis dissecans of the distal femur and patella. Clin Sports Med. 1997;16:157–74.

    Article  CAS  PubMed  Google Scholar 

  38. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961;43-B:752–7.

    Article  CAS  PubMed  Google Scholar 

  39. Pakin SK, Xu J, Schweitzer ME, Regatte RR. Rapid 3D-T1rho mapping of the knee joint at 3.0 T with parallel imaging. Magn Reson Med. 2006;56(3):563–71.

    Article  PubMed  Google Scholar 

  40. Pavlov H. Orthopaedist's guide to plain film imaging. New York: Thieme Publishers; 1999.

    Google Scholar 

  41. Peterfy CG, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  42. Peters TA, McLean ID. Osteochondritis dissecans of the patellofemoral joint. Am J Sports Med. 2000;28:63–7.

    Article  CAS  PubMed  Google Scholar 

  43. Pfirrmann CW, Zanetti M, Romero J, et al. Femoral trochlear dysplasia: MR findings. Radiology. 2000;216(3):858–64.

    Article  CAS  PubMed  Google Scholar 

  44. Potter HG, Linklater JM, Allen AA, et al. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am. 1998;80:1276–84.

    Article  CAS  PubMed  Google Scholar 

  45. Reider B, Marshall JL, Koslin B, et al. The anterior aspect of the knee joint. J Bone Joint Surg Am. 1981;63:351–6.

    Article  CAS  PubMed  Google Scholar 

  46. Saddik D, McNally EG, Richardson M. MRI of Hoffa’s fat pad. Skelet Radiol. 2004;33(8):433–44.

    Article  CAS  Google Scholar 

  47. Samim M, Smitaman E, Lawrence D. MRI of anterior knee pain. Skelet Radiol. 2014;43(7):875–93.

    Article  Google Scholar 

  48. Schwaiger BJ, Gersing AS, Mbapte Wamba J, et al. Can signal abnormalities detected with MR imaging in knee articular cartilage be used to predict development of morphologic cartilage defects? 48-month data from the osteoarthritis initiative. Radiology. 2016;281(1):158–67.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sherman SL, Plackis AC, Nuelle CW. Patellofemoral anatomy and biomechanics. Clin Sports Med. 2014;33(3):389–401.

    Article  PubMed  Google Scholar 

  50. Shindle MK, Foo LF, Kelly BT, et al. Magnetic resonance imaging of cartilage in the athlete: current techniques and spectrum of disease. J Bone Joint Surg Am. 2006;88(Suppl 4):27–46.

    PubMed  Google Scholar 

  51. Stefanik JJ, Gross KD, Guermazi A, et al. The relation of MRI-detected structural damage in the medial and lateral patellofemoral joint to knee pain: the multicenter and Framingham osteoarthritis studies. Osteoarthr Cartil. 2015;23(4):565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stefanik JJ, Guermazi A, Roemer FW, et al. Changes in patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over 7 years: the multicenter osteoarthritis study. Osteoarthr Cartil. 2016;424(7):1160–6.

    Article  Google Scholar 

  53. Stephen JM, Urquhart DW, van Arkel RJ, et al. The use of Sonographically guided botulinum toxin type a (Dysport) injections into the tensor fasciae Latae for the treatment of lateral Patellofemoral overload syndrome. Am J Sports Med. 2016;44(5):1195–202.

    Article  PubMed  Google Scholar 

  54. van de Loo AA, Arntz OJ, Otterness IG, et al. Proteoglycan loss and subsequent replenishment in articular cartilage after a mild arthritic insult by IL-1 in mice: impaired proteoglycan turnover in the recovery phase. Agents Actions. 1994;41:200–8.

    Article  PubMed  Google Scholar 

  55. van der Heijden RA, de Kanter JL, Bierma-Zeinstra SM, et al. Structural abnormalities on magnetic resonance imaging in patients with Patellofemoral pain: a cross-sectional case-control study. Am J Sports Med. 2016;44(9):2339–46.

    Article  PubMed  Google Scholar 

  56. Wang L, Chang G, Xu J, et al. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T. Eur J Radiol. 2012;81(9):2329–36.

    Article  PubMed  Google Scholar 

  57. Wheaton AJ, Dodge GR, Borthakur A, et al. Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging. J Orthop Res. 2005;23(1):102–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. White BJ, Sherman OH. Patellofemoral instability. Bull NYU Hosp Jt Dis. 2009;67(1):22–9.

    PubMed  Google Scholar 

  59. Wiberg G. Roentgenographic and anatomic studies on the femoropatellar joint. Acta Orthop Scand. 1941;12:319–410.

    Article  Google Scholar 

  60. Williams A, Gillis A, McKenzie C. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol. 2004;182(1):167–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalia, V., Mintz, D.N. (2019). Imaging in Patellofemoral Pain. In: Shubin Stein, B., Strickland, S. (eds) Patellofemoral Pain and Instability. Springer, Cham. https://doi.org/10.1007/978-3-319-97640-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97640-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97639-6

  • Online ISBN: 978-3-319-97640-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics