Skip to main content

Calibration Method to Improve Transfer from Simulation to Quadruped Robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10994))

Abstract

Using passive compliance in robotic locomotion has been seen as a cheap and straightforward way of increasing the performance in energy consumption and robustness. However, the control for such systems remains quite challenging when using traditional robotic techniques. The progress in machine learning opens a horizon of new possibilities in this direction but the training methods are generally too long and laborious to be conducted on a real robot platform. On the other hand, learning a control policy in simulation also raises a lot of complication in the transfer. In this paper, we designed a cheap quadruped robot and detail a calibration method to optimize a simulation model in order to facilitate the transfer of parametric motor primitives. We present results validating the transfer of Central Pattern Generators (CPG) learned in simulation to the robot which already give positive insights on the validity of this method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://wiki.ros.org/.

  2. 2.

    https://youtu.be/CqpkC630fJA.

  3. 3.

    https://youtu.be/zCHRWxfoOMU.

References

  1. Aschenbeck, K.S., Kern, N.I., Bachmann, R.J., Quinn, R.D.: Design of a quadruped robot driven by air muscles. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006, pp. 875–880. IEEE (2006)

    Google Scholar 

  2. Barasuol, V., Buchli, J., Semini, C., Frigerio, M., de Pieri, E.R., Caldwell, D.G.: A reactive controller framework for quadrupedal locomotion on challenging terrain. In: 2013 IEEE International Conference on Robotics and Automation, ICRA, pp. 2554–2561 (2013)

    Google Scholar 

  3. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  4. Connell, J.H., Mahadevan, S.: Robot Learning, vol. 233. Springer, New York (2012). https://doi.org/10.1007/978-1-4615-3184-5

    Book  MATH  Google Scholar 

  5. Degrave, J., Burm, M., Kindermans, P., Dambre, J., Wyffels, F.: Transfer learning of gaits on a quadrupedal robot. Adapt. Behav. 23(2), 69–82 (2015)

    Article  Google Scholar 

  6. Devin, C., Gupta, A., Darrell, T., Abbeel, P., Levine, S.: Learning modular neural network policies for multi-task and multi-robot transfer. In: 2017 IEEE International Conference on Robotics and Automation, ICRA, pp. 2169–2176 (2017)

    Google Scholar 

  7. Falotico, E., et al.: Connecting artificial brains to robots in a comprehensive simulation framework: the neurorobotics platform. Front. Neurorobot. 11, 2 (2017)

    Article  Google Scholar 

  8. Füchslin, R.M., et al.: Morphological computation and morphological control: steps toward a formal theory and applications. Artificial Life 19(1), 9–34 (2013)

    Article  Google Scholar 

  9. Fukuoka, Y., Kimura, H., Hada, Y., Takase, K.: Adaptive dynamic walking of a quadruped robot Tekken on irregular terrain using a neural system model. In: 2003 IEEE International Conference on Robotics and Automation, ICRA, vol. 2, pp. 2037–2042. IEEE (2003)

    Google Scholar 

  10. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1_4

    Chapter  Google Scholar 

  11. Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: The role of feedback in morphological computation with compliant bodies. Biol. Cybernet. 106(10), 595–613 (2012)

    Article  MathSciNet  Google Scholar 

  12. Heess, N., et al.: Emergence of locomotion behaviours in rich environments. CoRR abs/1707.02286 (2017). http://arxiv.org/abs/1707.02286

  13. Heess, N., Wayne, G., Tassa, Y., Lillicrap, T.P., Riedmiller, M.A., Silver, D.: Learning and transfer of modulated locomotor controllers. CoRR abs/1610.05182 (2016). http://arxiv.org/abs/1610.05182

  14. Khoramshahi, M., Spröwitz, A., Tuleu, A., Ahmadabadi, M.N., Ijspeert, A.J.: Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot. In: 2013 IEEE International Conference on Robotics and Automation, ICRA, pp. 3329–3334. IEEE (2013)

    Google Scholar 

  15. Martius, G., Lampert, C.H.: Extrapolation and learning equations. CoRR abs/1610.02995 (2016). http://arxiv.org/abs/1610.02995

  16. Park, H., Wensing, P.M., Kim, S.: High-speed bounding with the MIT cheetah 2: control design and experiments. Int. J. Robot. Res. 36(2), 167–192 (2017)

    Article  Google Scholar 

  17. Peng, X.B., Berseth, G., Yin, K., van de Panne, M.: DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Trans. Graph. 36(4), 41:1–41:13 (2017)

    Article  Google Scholar 

  18. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain quadruped robot. IFAC Proc. Vol. 41(2), 10822–10825 (2008)

    Article  Google Scholar 

  19. Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: 2008 IEEE International Conference on Robotics and Automation, ICRA, pp. 819–824 (2008)

    Google Scholar 

  20. Urbain, G., Degrave, J., Carette, B., Dambre, J., Wyffels, F.: Morphological properties of mass-spring networks for optimal locomotion learning. Front. Neurorobot. 11, 16 (2017)

    Google Scholar 

  21. Willems, B., Degrave, J., Dambre, J., Wyffels, F.: Quadruped robots benefit from compliant leg designs. Presented at the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (2017)

    Google Scholar 

Download references

Acknowledgments

This research has received funding from the European Unions Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 720270 (Human Brain Project SGA1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Urbain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Urbain, G., Vandesompele, A., Wyffels, F., Dambre, J. (2018). Calibration Method to Improve Transfer from Simulation to Quadruped Robots. In: Manoonpong, P., Larsen, J., Xiong, X., Hallam, J., Triesch, J. (eds) From Animals to Animats 15. SAB 2018. Lecture Notes in Computer Science(), vol 10994. Springer, Cham. https://doi.org/10.1007/978-3-319-97628-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97628-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97627-3

  • Online ISBN: 978-3-319-97628-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics