Skip to main content

Minimal Model for Body–Limb Coordination in Quadruped High-Speed Running

  • Conference paper
  • First Online:
Book cover From Animals to Animats 15 (SAB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10994))

Included in the following conference series:

Abstract

Cursorial quadrupeds exploit their limbs and bodies (i.e., body–limb coordination) to achieve faster locomotion speed when compared to that with only limbs. Extant studies examined various legged robots that utilize flexible spine bending. However, the control principle of body–limb coordination is not established to date. This study proposes a novel control scheme for body–limb coordination in which all degrees of freedom of the entire body aid each other in achieving higher performance. The 2D simulation results indicate that mutual sensory feedback between the limb and spine plays essential roles in generating their adaptive locomotion patterns in response to physical situations of the body parts and thereby in achieving faster locomotion speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertram, J.E., Gutmann, A.: Motions of the running horse and cheetah revisited: fundamental mechanics of the transverse and rotary gallop. J. Roy. Soc. 6, 549–559 (2008)

    Article  Google Scholar 

  2. Maes, L.D., Herbin, M., Hackert, R., Bels, V.L., Abourachid, A.: Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed. J. Exp. Biol. 211, 138–149 (2008)

    Article  Google Scholar 

  3. Biancardi, C.M., Minetti, A.E.: Biomechanical determinants of transverse and rotary gallop in cursorial mammals. J. Exp. Biol. 215, 4144–4156 (2012)

    Article  Google Scholar 

  4. Schiling, N., Hackert, R.: Sagittal spine movements of small therian mammals during asymmetrical gaits. J. Exp. Biol. 209, 3925–3939 (2006)

    Article  Google Scholar 

  5. Schilling, N., Carrier, D.R.: Function of the epaxial muscles in walking, trotting and galloping dogs: implications for the evolution of epaxial muscle function in tetrapods. J. Exp. Biol. 213, 1490–1502 (2010)

    Article  Google Scholar 

  6. Deng, Q., Wang, S., Xu, W., Mo, J., Liang, Q.: Quasi passive bounding of a quadruped model with articulated spine. Mech. Mach. Theor. 52, 232–242 (2012)

    Article  Google Scholar 

  7. Cao, Q., Poulakakis, I.: Quadrupedal running with a flexible torso: control and speed transitions with sums-of-squares verification. Artif. Life Robot. 21, 384–392 (2016)

    Article  Google Scholar 

  8. Seok, S., Wang, A., Chuah, M.Y., Otten, D., Lang, J., Kim, S.: Design principles for highly efficient quadrupeds and implementation on the MIT cheetah robot. In: Proceedings of IEEE ICRA 2013, pp. 3307–3312 (2013)

    Google Scholar 

  9. Eckert, P., Spröwitz, A., Witte, H., Ijspeert, A.J.: Comparing the effect of different spine and leg designs for a small bounding quadruped robot. In: Proceedings of IEEE ICRA 2015, pp. 3128–3133 (2015)

    Google Scholar 

  10. Pouya, S., Khodabakhsh, M., Spröwitz, A., Ijspeert, A.J.: Spinal joint compliance and actuation in a simulated bounding quadruped robot. Auton. Robot. 41, 437–452 (2017)

    Article  Google Scholar 

  11. Wang, C., Zhang, T., Wei, X., Long, Y., Wang, S.: Dynamic characteristics and stability criterion of rotary galloping gait with an articulated passive spine joint. Ad. Robot. 31(4), 168–183 (2017)

    Article  Google Scholar 

  12. Duperret, J., Koditschek, D.E.: Empirical validation of a spined sagittal-plane quadrupedal model. In: Proceedings of IEEE ICRA 2017, pp. 1058–1064 (2017)

    Google Scholar 

  13. Chen, D., Li, N., Wang, H., Chen, L.: Effect of flexible spine motion on energy efficiency in quadruped running. J. Bionic Eng. 14, 716–725 (2017)

    Article  Google Scholar 

  14. Wang, C., Wang, S.: Bionic control of cheetah bounding with a segmented spine. Appl. Bionics Biomech. 2016, 1–12 (2016). Article No. 5041586

    Google Scholar 

  15. Shura, S., Fukuhara, A., Owaki, D., Kano, T., Ijspeert, A.J., Ishiguro, A.: A minimal model for body-limb coordination in quadruped locomotion. In: The 8th International Symposium on Adaptive Motion of Animals and Machines, p. 39 (2017)

    Google Scholar 

  16. Shura, S., Fukuhara, A., Owaki, D., Kano, T., Ijspeert, A.J., Ishiguro, A.: A simple body-limb coordination model that mimics primitive tetrapod walking. In: Proceedings of the SICE Annual Conference 2017, pp. 12–14 (2017)

    Google Scholar 

  17. Grillner, S.: Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol. Rev. 55(2), 247–304 (1975)

    Article  Google Scholar 

  18. Owaki, D., Kano, T., Nagasawa, K., Tero, A., Ishiguro, A.: Simple robot suggests physical interlimb communication is essential for quadruped walking. J. Roy. Soc. Interface 10(78), 20120669 (2013)

    Article  Google Scholar 

  19. Owaki, D., Ishiguro, A.: A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping. Sci. Rep. 7, 77 (2017). https://doi.org/10.1038/s41598-017-00348-9

    Article  Google Scholar 

  20. Hydson, P.S., Corr, S.A., Davis, R.C., Clancy, S.N., Lane, E., Wilson, A.M.: Functional anatomy of the cheetah (Acinonyx jubatus) forelimb. J. Anat. 218(4), 375–385 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Japan Science and Technology Agency, CREST (JPMJCR14D5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Fukuhara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fukuhara, A., Koizumi, Y., Suzuki, S., Kano, T., Ishiguro, A. (2018). Minimal Model for Body–Limb Coordination in Quadruped High-Speed Running. In: Manoonpong, P., Larsen, J., Xiong, X., Hallam, J., Triesch, J. (eds) From Animals to Animats 15. SAB 2018. Lecture Notes in Computer Science(), vol 10994. Springer, Cham. https://doi.org/10.1007/978-3-319-97628-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97628-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97627-3

  • Online ISBN: 978-3-319-97628-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics