Advertisement

Local Null Controllability of the N-Dimensional Ladyzhenskaya-Smagorinsky with N-1 Scalar Controls

  • Dany Nina Huaman
  • Juan LímacoEmail author
  • Miguel R. Nuñez Chávez
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 17)

Abstract

This paper deals with the null controllability of a differential turbulence model of the Ladyzhenskaya-Smagorinsky kind. In the equations, we find local and nonlocal nonlinearities: the usual transport terms and a turbulent viscosity that depends on the global in space energy dissipated by the mean flow. We prove that the N-systems are locally null-controllable with N-1 scalar controls in an arbitrary control domain.

Keywords

Ladyzhenskaya-Smagorinsky Boussinesq Null controllability Carleman inequalities 

References

  1. 1.
    Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Translated from the Russian by V. M. Volosov. Contemporary Soviet Mathematics. Consultants Bureau, New York (1987)CrossRefGoogle Scholar
  2. 2.
    Carreño, N.: Local controllability of the N-dimensional Boussinesq system with N-1 scalar controls in an arbitrary control domain. Math. Control Relat. Fields 2(4), 361–382 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Carreño, N., Guerrero, S.: Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain. J. Math. Fluid Mech. 15(1), 139–153 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Coron, J.-M., Lissy, P.: Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components. Invent. Math. 198(3), 833–880 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.-P.: Local exact controllability of the Navier Stokes system. J. Math. Pures Appl. 83, 1501–1542 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.-P.: Some controllability for the N-dimensional Navier-Stokes and Boussinesq systems with N-1 scalar controls. SIAM J. Control Optim. 45(1), 146–173 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fernández-Cara, E., Límaco, J., de Menezes, S.B.: Theoretical and numerical local null controllability of a Ladyzhenskaya-Smagorinsky model of turbulence. J. Math. Fluid Mech. 17(4), 669–698 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fursikov, A., Imanuvilov, O.Y.: Controllability of Evolution Equations. Lecture Notes, vol. 34. Seoul National University, Seoul (1996)Google Scholar
  9. 9.
    Guerrero, S.: Local exact controllability to the trajectories of the Boussinesq system. Ann. I. H. Poincaré 23, 29–61 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Imanuvilov, O.Y., Puel, J.-P.: Global Carleman estimates for weak elliptic non homogeneous Dirichlet problem. Int. Math. Res. Not. 16, 883–913 (2003)CrossRefGoogle Scholar
  11. 11.
    Lions, J.L.: Quelques Méthodes de Résolutions des Problèmes aux Limites non Linéaires. Dunod Gauthier-Villars, Paris (1969)zbMATHGoogle Scholar
  12. 12.
    Puel, J.-P.: Controllability of Navier-Stokes Equations. Laboratoire de Mathematiques de Versailles (2012)Google Scholar
  13. 13.
    Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. Studies in Applied Mathematics, vol. 2. North-Holland, Amsterdam (1977)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dany Nina Huaman
    • 1
  • Juan Límaco
    • 1
    Email author
  • Miguel R. Nuñez Chávez
    • 1
  1. 1.Instituto de Matemática e EstatísticaUFFNiterói, RJBrazil

Personalised recommendations