Skip to main content

A Second-Order Linear Newmark Method for Lagrangian Navier-Stokes Equations

  • Chapter
  • First Online:

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 17))

Abstract

In this paper we propose a second-order pure Lagrange-Galerkin method for the numerical solution of free surface problems in fluid mechanics. We consider a viscous, incompressible Newtonian fluid in a time dependent domain which may present large deformations but no topological changes at interfaces. Pure-Lagrangian methods are useful for solving these problems because the convective term disappears, the computational domain is independent of time and modelling and tracking of the free surface is straightforward as far as there is no solid walls preventing the free motion of surface particles. Unfortunately, for moderate to high-Reynolds number flows and as a consequence of high distortion of the moved mesh, it can be necessary to re-mesh and re-initialize the motion each certain time. In this paper, a Newmark algorithm is considered for both, the time semi-discretization of equations in Lagrangian coordinates and the computation of initial conditions. The proposed scheme is pure-Lagrangian and can be written in terms of either material velocity and pressure or material acceleration and pressure or material displacement and pressure. The three formulations are stated. In order to assess the performance of the overall numerical method, we solve different problems in two space dimensions. In particular, numerical results of a dam break problem and a flow past a cylinder are presented.

Dedicated to Prof. Enrique Fernández-Cara on the occasion of his 60th birthday.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ewing, R.E., Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math. 128, 423–445 (2001)

    Article  MathSciNet  Google Scholar 

  2. Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  Google Scholar 

  3. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  MathSciNet  Google Scholar 

  4. Süli, E.: Stability and convergence of the Lagrange-Galerkin method with non-exact integration. In: The Mathematics of Finite Elements and Applications, VI, pp. 435–442. Academic, London (1988)

    Google Scholar 

  5. Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-diffusion problems. Numer. Math. 92, 161–177 (2002)

    Article  MathSciNet  Google Scholar 

  6. Bermúdez, A., Nogueiras, M.R., Vázquez, C.: Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements. Part I: Time discretization. SIAM. J. Numer. Anal. 44, 1829–1853 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Bermúdez, A., Nogueiras, M.R., Vázquez, C.: Numerical analysis of convection-diffusion-reaction problems with higher order characteristics/finite elements. Part II: fully discretized scheme and quadrature formulas. SIAM. J. Numer. Anal. 44, 1854–1876 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Benítez, M., Bermúdez, A.: A second order characteristics finite element scheme for natural convection problems. J. Comput. Appl. Math. 235, 3270–3284 (2011)

    Article  MathSciNet  Google Scholar 

  9. Idelsohn, S., Oñate, E., Del Pin, F.: The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Meth. Eng. 61, 964–989 (2004)

    Article  MathSciNet  Google Scholar 

  10. Idelsohn, S., Oñate, E., Del Pin, F., Calvo, N.: Fluid-structure interaction using the particle finite element method. Comput. Methods Appl. Mech. Eng. 195, 2100–2123 (2006)

    Article  MathSciNet  Google Scholar 

  11. Idelsohn, S., Marti, J., Limache, A., Oñate, E.: Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM. Comput. Methods Appl. Mech. Eng. 197, 1762–1776 (2008)

    Article  MathSciNet  Google Scholar 

  12. Del Pin, F., Idelsohn, S., Oñate, E., Aubry, R.: The Ale/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid-object interactions. Comput. Fluids 36, 27–38 (2007)

    Article  Google Scholar 

  13. Oñate, E., Idelsohn, S., Celigueta, M.A., Rossi, R.: Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Methods Appl. Mech. Eng. 197, 1777–1800 (2008)

    Article  MathSciNet  Google Scholar 

  14. Radovitzky, R., Ortiz, M.: Lagrangian finite element analysis of newtonian fluid flows. Int. J. Numer. Meth. Eng. 43, 607–619 (1998)

    Article  MathSciNet  Google Scholar 

  15. Benítez, M., Bermúdez, A.: Numerical Analysis of a second-order pure Lagrange-Galerkin method for convection-diffusion problems. Part I: time discretization. SIAM. J. Numer. Anal. 50, 858–882 (2012)

    MATH  Google Scholar 

  16. Benítez, M., Bermúdez, A.: Numerical Analysis of a second-order pure Lagrange-Galerkin method for convection-diffusion problems. Part II: fully discretized scheme and numerical results. SIAM. J. Numer. Anal. 50, 2824–2844 (2012)

    MATH  Google Scholar 

  17. Benítez, M., Bermúdez, A.: Pure Lagrangian and semi-Lagrangian finite element methods for the numerical solution of convection-diffusion problems. Int. J. Numer. Anal. Mod. 11, 271–287 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Benítez, M., Bermúdez, A.: Pure Lagrangian and semi-Lagrangian finite element methods for the numerical solution of Navier-Stokes equations. Appl. Numer. Math. 95, 62–81 (2015)

    Article  MathSciNet  Google Scholar 

  19. Benítez, M., Bermúdez, A.: Second order pure Lagrange-Galerkin methods for fluid-structure interaction problems. SIAM J. Sci. Comput. 37, B744–B777 (2015)

    Article  MathSciNet  Google Scholar 

  20. Gurtin, M.E.: An Introduction to Continuum Mechanics, vol. 158. Academic, San Diego (1981)

    MATH  Google Scholar 

  21. Badía, S., Codina, R.: Unified stabilized finite element formulations for the stokes and the darcy problems. SIAM J. Num. Anal. 47, 1971–2000 (2009)

    Article  MathSciNet  Google Scholar 

  22. Raviart, P.A., Thomas, J.M.: A mixed-finite element method for second order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics. Springer, New York (1977)

    Google Scholar 

  23. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  Google Scholar 

  24. Ramaswamy, B., Kawahara, M.: Lagrangian finite element analysis applied to viscous free surface fluid flow. Int. J. Numer. Meth. Fluids 7, 953–984 (1987)

    Article  Google Scholar 

  25. Walhorn, E., Kölke, A., Hübner, B., Dinkler, D.: Fluid–structure coupling within a monolithic model involving free surface flows. Comput. Struct. 83(25), 2100–2111 (2005)

    Article  Google Scholar 

  26. Hansbo, P.: The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations. Comput. Method. Appl. M. 99(2–3), 171–186 (1992)

    Article  MathSciNet  Google Scholar 

  27. Wall, W.A., Genkinger, S., Ramm, E.: A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput. Fluids 36(1), 169–183 (2007)

    Article  Google Scholar 

  28. Hirt, C.W., Nichols, B.D.: Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  Google Scholar 

  29. Martin, J.C., Moyce, W.J.: Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. R. Soc. A 244(882), 312–324 (1952)

    Google Scholar 

Download references

Acknowledgements

Authors wish to thank the referee for his/her valuable comments.

This work was partially funded by FEDER and the Spanish Ministry of Science and Innovation under research projects ENE2013-47867-C2-1-R and MTM2013-43745-R, and by FEDER and Xunta de Galicia under research project GRC2013/014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Bermúdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benítez, M., Bermúdez, A., Fontán, P. (2018). A Second-Order Linear Newmark Method for Lagrangian Navier-Stokes Equations. In: Doubova, A., González-Burgos, M., Guillén-González, F., Marín Beltrán, M. (eds) Recent Advances in PDEs: Analysis, Numerics and Control. SEMA SIMAI Springer Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-97613-6_3

Download citation

Publish with us

Policies and ethics