Advertisement

Essential Spectrum and Null Controllability of Some Parabolic Equations

  • Farid Ammar KhodjaEmail author
  • Cédric Dupaix
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 17)

Abstract

We give some examples proving that if the underlying elliptic operator of a parabolic equation admits essential spectrum, then boundary or internal null controllability are not possible in general.

Keywords

Controllability Degenerate parabolic equations Elliptic systems Essential spectrum Singular sequences 

References

  1. 1.
    Ammar Khodja, F., Boussaïd, N., Dupaix, C.: (in preparation)Google Scholar
  2. 2.
    Ammar-Khodja, F., Geymonat, G., Münch, A.: On the exact controllability of a system of mixed order with essential spectrum. C. R. Acad. Sci. Paris Série I 346, 629–634 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ammar Khodja, F., Mauffrey, K., Münch, A.: Exact controllability of a system of mixed order with essential spectrum. SIAM J. Control 49, 1857–1879 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Atkinson, F.V., Langer, H., Mennicken, R., Skalikov, A.A.: The essential spectrum of some matrix operator. Math. Nachr. 167, 5–20 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Beauchard, K., Coron, J.-M., Rouchon, P.: Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations. Commun. Math. Phys. 296, 525–557 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cannarsa, P., Martinez, P., Vancostenoble, J.: Global Carleman estimates for degenerate parabolic operators with applications. Mem. Am. Math. Soc. 239(1133) (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Doubova, A., Fernández-Cara, E.: On the control of viscoelastic Jeffreys fluids. Syst. Control Lett. 61, 573–579 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Egorov, Yu.V., Shubin, M.A. (eds.) Partial Differential Equations II. Springer, Berlin/HeidelbergGoogle Scholar
  9. 9.
    Geymonat, G., Valente, V.: A noncontrollability result for systems of mixed order. SIAM J. Control Optim. 39(3), 661–672 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grubb, G., Geymonat, G.: The essential spectrum of elliptic systems of mixed order. Math. Ann. 227, 247–276 (1977)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guerrero, S., Imanuvilov, O.Yu.: Remarks on non controllability of the heat equation with memory. ESAIM: COCV 19, 288–300 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory. Springer, Berlin (1996)CrossRefGoogle Scholar
  13. 13.
    Münch, A.: A variational approach to approximate controls for system with essential spectrum: application to membranal arch. Evol. Equ. Control Theory 2, 119–151 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Palais, R.S.: Seminar on the Atiyah-Singer Index Theorem. Princeton University Press, Princeton (1965)zbMATHGoogle Scholar
  15. 15.
    Pang, M.M.H.: L 1 properties of two classes of singular second order elliptic operators. J. Lond. Math. Soc. (2) 38, 525–543 (1988)Google Scholar
  16. 16.
    Višik, M.I.: Boundary value problems for elliptic equations degenerating on the boundary of a region. Mat. Sb. 35, 513–568 (1954); English transl. in Am. Math. Soc. Transl. (2) 35 (1964)Google Scholar
  17. 17.
    Wolf, F.: On the essential spectrum of partial differential boundary problems. Commun. Pure Appl. Math. XII, 211–228 (1959)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques de BesançonBesançon CedexFrance

Personalised recommendations