Effect of Growth Time on Thickness of InAlN/GaN Heterostructures Grown by MOCVD

  • Pradeep Siddham
  • Surender Subburaj
  • Prabakaran Kandasamy
  • Jayasakthi Mathiyan
  • Shubra Singh
  • Baskar KrishnanEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)


In this paper, InAlN epilayers were grown on the GaN/sapphire templates using metal-organic chemical vapour deposition (MOCVD) at 800 °C by varying the growth time. The variation in growth time is believed to be directly proportional to the thickness. The In composition and change in thickness of the InAlN epilayers are found by High Resolution X-Ray Diffraction (HRXRD). The roughness of InAlN epilayers decreases with increase in thickness of the epilayers, which was found using Atomic Force Microscopy (AFM). Room temperature Photoluminescence (PL) from InAlN exhibits GaN (362 nm) peak and yellow luminescence (YL) for lesser thickness which is found to be suppressed with increase in thickness of the epilayers. The optical band edge of InxAl1−xN ternary alloy was estimated by optical absorbance.



The authors acknowledge the Department of Science and Technology (DST/TM/SERI/2k12/71(G)), India for the financial support. One of the authors (S. Pradeep) would like to thank IUAC, New Delhi for the award of Project Fellowship (UFR-58314).


  1. 1.
    J. Kuzmik, Power electronics on InAlN/(In)GaN: prospect for a record performance. IEEE Electron Device Lett 22, 510 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    A. Bykhovski, B. Gelmomt, M.S. Shur, The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure. J. Appl. Phys. 74, 6734 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    M. Hiroki, N. Maeda, T. Kobayashi, Fabrication of an InAlN/AlGaN/AlN/GaN heterostructure with a flat surface and high electron mobility. Appl. Phys. Express 1, 111102 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    R. Butte, J.F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H.J. Buehlmann, S. Christopoulos, G.B.H. von Hogersthal, A.J.D. Grundy, M. Mosca, C. Pinquier, M.A. Py, F. Demangeot, J. Grandon, P.G. Lagoudakis, J.J. Baumberg, N. Grandjen, Current status of AlInN layers lattice-matched to GaN for photonics and electronics. J. Phys. D Appl. Phys. 40, 6328 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    T.Y. Wang, J.H. Liang, D.S. Wuu, Defect formation mechanism and quality improvement of InAlN epilayers grown by metal–organic chemical vapor deposition. CrystEngComm 17, 8505 (2015)CrossRefGoogle Scholar
  6. 6.
    T. Fujimori, H. Imai, A. Wakahara, H. Okada, A. Yoshida, T. Shibata, M. Tanaka, Growth and characterization of AlInN on AlN template. J. Cryst. Growth 272, 381 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    E. Arslan, P. Demirel, H. Cakmak, M.K. Ozturk, E. Ozbay, Mosaic structure characterization of the AlInN layer grown on sapphire substrate. Adv. Mater. Sci. Eng. 980639, 11 (2014)Google Scholar
  8. 8.
    M. Hiroki, N. Watanabe, N. Maeda, H. Yokoyama, K. Kumakura, H. Yamamoto, Influence of metalorganic vapor phase epitaxy regrowth on characteristics of InAlN/AlGaN/GaN high electron mobility transistors. Jpn. J. Appl. Phys. 52, 4 (2013)CrossRefGoogle Scholar
  9. 9.
    M.R. Correia, S. Pereira, E. Pereira, R.A. Sa Ferreira, J. Frandon, E. Alves, I.M. Watson, C. Liu, A. Morel, B. Gil, Optical studies on the red luminescence of InGaN epilayers. Superlattices Microstruct. 36, 625–632 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    L. Du, Q. Wu, X. Pei, T. Sun, Y. Zhang, L. Yang, X. Wang, Z. Hu, Morphology and composition evolution of one-dimensional InxAl1−xN nanostructures induced by the vapour pressure ratio. CrystEngComm 18, 213 (2016)CrossRefGoogle Scholar
  11. 11.
    D.V. Dinh, H. Li, P.J. Parbrook, Polar and semipolar (11.22) InAlN layers grown on AlN templates using MOVPE. Phys. Status Solidi B 253, 99 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    T.S. Oh, J.O. Kim, H. Jeong, Y.S. Lee, S. Nagarajan, K.Y. Lim, C.H. Hong, E.K. Suh, Growth and properties of Al-rich InxAl1 − xN ternary alloy grown on GaN template by metalorganic chemical vapour deposition. J. Phys. D: Appl. Phys. 41, 0095402 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pradeep Siddham
    • 1
  • Surender Subburaj
    • 1
  • Prabakaran Kandasamy
    • 1
  • Jayasakthi Mathiyan
    • 1
  • Shubra Singh
    • 1
  • Baskar Krishnan
    • 1
    • 2
    Email author
  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia
  2. 2.Manonmaniam Sundaranar UniversityTirunelveliIndia

Personalised recommendations