Skip to main content

Computation of Electronic and Optical Properties of GaAsNSb with 16 Band k dot p Model

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 215))

Abstract

The electronic band structure (BS) and optical gain have been calculated for GaAs1−xyNxSby/GaAs alloys by combining two Band Anticrossing (BAC) Models for Conduction Band and Valence Band i.e. CBAC and VBAC under k·p formalism. This mathematical model based on a 16 × 16 Hamiltonian matrix is used to compute the anticrossing interactions between the sub bands for variable Sb and N concentration in GaAsNSb/GaAs. The effect of Sb and N related impurity levels in GaAsNSb/GaAs on the band gap, carrier effective masses, spin-orbit splitting energy, band offsets and their ratios are also investigated. It has been shown that band gap shrinks by ~330 meV for Sb and N concentration of 5 and 1.9 at% respectively. The concentration dependent band gap reduction and the enhancement of spin-orbit splitting energy results in the origin of a Δso > Eg regime which forms the basis for the suppressing Auger recombination mechanisms in III–V LASERs. We have also investigated the variation of optical gain for different injected surface carrier densities and carrier confinement assists the optical gain to reach 1400/cm−1 near 1.2 eV window.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Ungaro, Le Roux, R. Teissier, J.C. Harmand, Electron. Lett. 35(15) (1999)

    Article  Google Scholar 

  2. J.C. Harmand, G. Ungaro, J. Ramos, E.V.K. Rao, G. Saint-Girons, R. Teissier, G. Le Roux, L. Largeau, G. Patriarche, J. Cryst. Growth 227, 553 (2001)

    Article  ADS  Google Scholar 

  3. A. Maros, N. Faleev, R.R. King, C.B. Honsberg, J. Vac. Sci. Technol. B 34, 02L106 (2016)

    Article  Google Scholar 

  4. S.A. Lourenco, I.F.L. Dias, J.L. Duarte, E. Laureto, V.M. Aquino, J.C. Harmand, Braz. J. Phys. 37, 1212 (2007)

    Article  ADS  Google Scholar 

  5. Y.-T. Lin, T.-C. Ma, T.-Y. Chen, H.-H. Lin, Appl. Phys. Lett. 93, 171914 (2008)

    Article  ADS  Google Scholar 

  6. T.D. Veal, L.F.J. Piper, S. Jollands, B.R. Bennett, P.H. Jefferson, P.A. Thomas, C.F. McConville, B.N. Murdin, L. Buckle, G.W. Smith, T. Ashley, Appl. Phys. Lett. 87, 132101 (2005)

    Article  ADS  Google Scholar 

  7. J.C. Harmand, A. Caliman, E.V.K. Rao, L. Largeau, J. Ramos, R. Teissier, L. Travers, G. Ungaro, B. Theys, I.F.L. Dias, Semicond. Sci. Technol. 17, 778 (2002)

    Article  ADS  Google Scholar 

  8. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, J. Furdyna, Phys. Rev. B 75, 045203 (2007)

    Article  ADS  Google Scholar 

  9. I. Mal, D.P. Samajdar, T.D. Das, Superlattices Microstruct. 106, 20–32 (2017)

    Article  ADS  Google Scholar 

  10. I. Mal, D.P. Samajdar, T.D. Das, Superlattices Microstruct. 109, 442–453 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Samajdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mal, I., Hazra, A., Samajdar, D.P., Das, T.D. (2019). Computation of Electronic and Optical Properties of GaAsNSb with 16 Band k dot p Model. In: Sharma, R., Rawal, D. (eds) The Physics of Semiconductor Devices. IWPSD 2017. Springer Proceedings in Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-97604-4_37

Download citation

Publish with us

Policies and ethics