Computation of Electronic and Optical Properties of GaAsNSb with 16 Band k dot p Model

  • Indranil Mal
  • Asish Hazra
  • D. P. SamajdarEmail author
  • T. D. Das
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)


The electronic band structure (BS) and optical gain have been calculated for GaAs1−xyNxSby/GaAs alloys by combining two Band Anticrossing (BAC) Models for Conduction Band and Valence Band i.e. CBAC and VBAC under k·p formalism. This mathematical model based on a 16 × 16 Hamiltonian matrix is used to compute the anticrossing interactions between the sub bands for variable Sb and N concentration in GaAsNSb/GaAs. The effect of Sb and N related impurity levels in GaAsNSb/GaAs on the band gap, carrier effective masses, spin-orbit splitting energy, band offsets and their ratios are also investigated. It has been shown that band gap shrinks by ~330 meV for Sb and N concentration of 5 and 1.9 at% respectively. The concentration dependent band gap reduction and the enhancement of spin-orbit splitting energy results in the origin of a Δso > Eg regime which forms the basis for the suppressing Auger recombination mechanisms in III–V LASERs. We have also investigated the variation of optical gain for different injected surface carrier densities and carrier confinement assists the optical gain to reach 1400/cm−1 near 1.2 eV window.


  1. 1.
    G. Ungaro, Le Roux, R. Teissier, J.C. Harmand, Electron. Lett. 35(15) (1999)CrossRefGoogle Scholar
  2. 2.
    J.C. Harmand, G. Ungaro, J. Ramos, E.V.K. Rao, G. Saint-Girons, R. Teissier, G. Le Roux, L. Largeau, G. Patriarche, J. Cryst. Growth 227, 553 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    A. Maros, N. Faleev, R.R. King, C.B. Honsberg, J. Vac. Sci. Technol. B 34, 02L106 (2016)CrossRefGoogle Scholar
  4. 4.
    S.A. Lourenco, I.F.L. Dias, J.L. Duarte, E. Laureto, V.M. Aquino, J.C. Harmand, Braz. J. Phys. 37, 1212 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Y.-T. Lin, T.-C. Ma, T.-Y. Chen, H.-H. Lin, Appl. Phys. Lett. 93, 171914 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    T.D. Veal, L.F.J. Piper, S. Jollands, B.R. Bennett, P.H. Jefferson, P.A. Thomas, C.F. McConville, B.N. Murdin, L. Buckle, G.W. Smith, T. Ashley, Appl. Phys. Lett. 87, 132101 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Harmand, A. Caliman, E.V.K. Rao, L. Largeau, J. Ramos, R. Teissier, L. Travers, G. Ungaro, B. Theys, I.F.L. Dias, Semicond. Sci. Technol. 17, 778 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, J. Furdyna, Phys. Rev. B 75, 045203 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    I. Mal, D.P. Samajdar, T.D. Das, Superlattices Microstruct. 106, 20–32 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    I. Mal, D.P. Samajdar, T.D. Das, Superlattices Microstruct. 109, 442–453 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Indranil Mal
    • 1
  • Asish Hazra
    • 2
  • D. P. Samajdar
    • 1
    Email author
  • T. D. Das
    • 3
  1. 1.Department of Electronics and Communication EngineeringPDPM Indian Institute of Information Technology, Design and ManufacturingJabalpurIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyPapum PareIndia
  3. 3.Department of Basic & Applied ScienceNational Institute of TechnologyPapum PareIndia

Personalised recommendations