A Physics Based Analytical Model for the Threshold Voltage of a Normally-off AlGaN/GaN FinFET

  • Punyabrata GhatakEmail author
  • Debashis Dutta
  • Navakanta Bhat
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)


Gallium nitride (GaN) based transistors are advantageous for high voltage power switching applications due to its superior material properties. In power switching applications normally-off transistors are preferred for their fail-safe operation at high voltages in addition to the advantages of lower power consumption and simpler drive circuits. However, planar AlGaN/GaN high-electron mobility transistors (HEMTs) are normally-on devices with negative threshold voltage due to the presence of polarization induced two-dimensional electron gas (2DEG) at the heterojunction at zero gate voltage. It has been experimentally observed that a normally-on AlGaN/GaN FinFET can be transformed into a normally-off transistor with positive threshold voltage by reducing the fin width. In this paper a physics based analytical model for the threshold voltage of a AlGaN/GaN FinFET is presented. It is seen that the strain induced in the channel region in the piezoelectric GaN layer just below the heterojunction plays an important role in determining the threshold voltage at narrow fin widths.


  1. 1.
    E. Ture, P. Brukner, B.-J. Godejohann, R. Aidam, M. Alsharef, R. Granzner, F. Schwierz, R. Quay, O. Ambacher, High-current submicrometer tri-gate GaN high-electron mobility transistors with binary and quaternary barriers. J. Electron Devices Soc. 4(1) (2016)CrossRefGoogle Scholar
  2. 2.
    K. Ohi, T. Hashizume, Drain current stability and controllability of threshold voltage and subthreshold current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor. Jpn. J. Appl. Phys. 48, 1–5 (2009)CrossRefGoogle Scholar
  3. 3.
    K. Ohi, J.T. Asubar, K. Nishiguchi, T. Hashizume, Current stability in multi-mesa-channel AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60, 2997–3004 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Alsharef, R. Granzner, F. Schwierz, Theoretical investigation of trigate AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60, 3335–3341 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    G. Steude, B.K. Meyer, A. Goldner, A. Hoffmann, A. Kaschner, F. Bechstedt, H. Amano, I. Akasaki, Strain modification of GaN in AlGaN/GaN epitaxial films. Jpn. J. Appl. Phys. 38, 498–500 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    B. Jogai, J.D. Albrecht, E. Pan, Effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction field effect transistors. J. Appl. Phys. 94, 3984–3989 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    B. Jogai, Free electron distribution in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys. 91, 3721–3729 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Frank, Y. Taur, H.-S.P. Wong, Generalized scale length for two-dimensional effects in MOSFET’s. IEEE Electron Device Lett. 19, 385–387 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    M. Povolotskyi, M. Auf der Maur, A. Di Carlo, Strain effects in freestanding three-dimensional nitride nanostructures. Phys. Stat. Sol. 11, 3891–3894 (2005)Google Scholar
  11. 11.
    R. Kern, P. Muller, Elastic relaxation of coherent epitaxial deposits. Surf. Sci. 392, 103–133 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    P. Muller, R. Kern, Some aspects of coherent epitaxial deposits. Microsc. Microanal. Microstruct. 8, 229–238 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Punyabrata Ghatak
    • 1
    Email author
  • Debashis Dutta
    • 1
  • Navakanta Bhat
    • 2
  1. 1.Ministry of Electronics and Information Technology, Government of IndiaNew DelhiIndia
  2. 2.Centre for Nano Science and Engineering, Indian Institute of ScienceBengaluruIndia

Personalised recommendations