Synthesis, Characterization and Temperature Dependence of Conductivity in Poly (o-toluidine)

  • Navdeep SharmaEmail author
  • Atul Kapil
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 215)


Poly (o-toluidine) (POT) was prepared by chemical oxidation method doped with p-toluene sulphonic (p-TSA) acid in the presence of ammonium persulphate (APS) as an oxidizing agent. Polymer synthesis was optimized for different dopant–to-monomer ratios for better conductivity results. The polymer was characterized by Fourier–transform infrared (FTIR) and ultra violet-visible absorption spectroscopy (UV-Vis). Crystallinity of the sample was examined by X-ray diffraction (XRD). Temperature dependence of conductivity was studied in the temperature range 300–430 K. The conductivity was found to show an increase of ~four orders with the rise in temp. The measured conductivity versus temperature data was fitted with Arrhenius model, Mott’s variable range hopping (VRH) model in order to investigate the charge transport mechanism in the higher temperature range.


  1. 1.
    J. Planes, A. Wolter, Y. Cheguettine, A. Pron, F. Genobd, M. Nechtschein, Polyaniline: synthesis, characterization, solution properties and composites. Phys. Rev. B. 58, 7774–7778 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    A.J. Heeger, Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth. Met. 125, 23–42 (2002)CrossRefGoogle Scholar
  3. 3.
    S. Saravanan, C.J. Mathai, M.R. Anantharaman, S. Venkatachalam, P.V. Prabhakaran, Investigations on the electrical and structural properties of polyaniline doped with camphor sulphonic acid. J. Phys. Chem. Solids 67, 1496–1501 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    P.K. Upadhyay, A. Ahmad, Chemical synthesis, spectral characterization and stability of some electrically conducting polymers. Chin. J. Polymer Sci. 28, 191–197 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Bhadra, N.K. Singha, D. Khastghir, Effect of aromatic substitution in aniline on the properties of polyaniline. Eur. Polymer J. 44, 1763–1770 (2008)CrossRefGoogle Scholar
  6. 6.
    E.C. Gomas, M.A.S. Oliveira, Chemical polymerization of aniline in hydrochloric acid (HCl and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. American. J. Polymer Sci. 2, 5–13 (2012)Google Scholar
  7. 7.
    N. Gospodinova, L. Terlemezyan, Conducting polymers prepared by oxidative polymerization: polyaniline. Prog. Polym. Sci. 23, 1443–1484 (1998)CrossRefGoogle Scholar
  8. 8.
    S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polymer Sci. 34, 783–810 (2009)CrossRefGoogle Scholar
  9. 9.
    M.S. Cho, S.Y. Park, J.Y. Hwang, H.J. Choi, Synthesis and electrical properties of polymer composites with polyaniline nanoparticles. Mater. Sci. Eng. C 24, 15–18 (2004)CrossRefGoogle Scholar
  10. 10.
    P.S. Rao, S. Subrahmanya, D.N. Sathyanarayana, Synthesis by inverse emulsion pathway and characterization of conductive polyaniline–poly (ethylene-co-vinyl acetate) blends. Synth. Met. 139, 397–404 (2003)CrossRefGoogle Scholar
  11. 11.
    Shumaila, G.B.V.S. Lakshmi, M. Alam, A.M. Siddiqui, M. Zulfequar, M. Husain, Synthesis and characterization of Se doped polyaniline. Current Appl. Phys. 11, 217–222 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M.V. Kulkarni, A.K. Viswanath, Comparative studies of chemically synthesized polyaniline and poly (o-toluidine) doped with p-toluene sulphonic acid. Eur. Polymer J. 40, 379–384 (2004)CrossRefGoogle Scholar
  13. 13.
    O. Konopelnik, O. Aksimentyeva, M. Grytsiv, Electrochromic transitions in polyaminoarene films electrochemically obtained on transparent electrodes. Mater. Sci. 20, 49 (2002)Google Scholar
  14. 14.
    R. Jamal, T. Abdiryim, I. Nurulla, Comparative studies of solid state synthesized poly (o-mehoxy aniline) and Poly (o-toluidine). Polym. Adv. Technol. 19, 1461–1466 (2008)Google Scholar
  15. 15.
    K.M. Ziadan, H.F. Hussein, K.I. Ajeel, Study of the electrical characteristics of poly (o-toluidine) and application in solar cell. Energy Procedia. 18, 157–164 (2012)CrossRefGoogle Scholar
  16. 16.
    T. Zhou, X. Xie, J. Cai, L. Yin, W. Ruan, Preparation of poly (o-toluidine)/TiO2 nanocomposites films and application for humidity sensing. Polym. Bull. Scholar
  17. 17.
    Z. Mucuk, M. Karakisla, M. Sacak, Synthesis of Poly(o-toluidine) in DMF/water mixture using benzoyl peroxide. Int. J. Polymer Anal. Char. 14, 403–417 (2009)CrossRefGoogle Scholar
  18. 18.
    N. Colak, B. Sokmen, Doping of chemically synthesized polyaniline. Designed Mono. Polym. 3, 181–189 (2000)CrossRefGoogle Scholar
  19. 19.
    M.V. Kulkarni, A.K. Viswanath, U.P. Malik, Studies on chemically synthesized organic acid doped poly (o-toluidine). Mater. Chem. Phys. 89, 1–5 (2005)CrossRefGoogle Scholar
  20. 20.
    C. Uchoyuk, M. Karakisla, M. Sacak, Preparation of poly (o-toluidine)/polyacrylonitrile composite fibres using CrO3. Indian J. Fibre Text. Res. 37, 120–126 (2012)Google Scholar
  21. 21.
    Taylor and Francis Group, in Hand-Book of Conducting Polymers, 3rd edn, vols. I and II, ed. by T.A. Skotheim, J.R. Reynolds (CRC press, New York, 2007)Google Scholar
  22. 22.
    Q. Li, L. Cruz, P. Philips, Granular-rod model for electronic conduction in polyaniline. Phys. Rev. B. 47, 1840 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    M.E. Jozefowicz, A.J. Epstein, J.P. Pouget, J.G. Masters, A. Ray, A.G. MacDiarmid, Macromolecules 24, 5863 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    T. Abdiryim, Z.X. Gang, R. Jamal, Synthesis and characterization of poly (o-Toluidine) doped with organic sulphonic acid by solid state polymerization. J. Appl. Polymer Sci. 96, 1630 (2005)CrossRefGoogle Scholar
  25. 25.
    C. Hu, Y. Li, Y. Kong, Y. Ding, Preparation of Poly (o-Toluidine)/ nano Zno/epoxy composite coating and evaluation of its corrosion resistance properties. Synth. Met. 214, 62 (2016)CrossRefGoogle Scholar
  26. 26.
    M.G. Han, S.S. Im, X-ray photoelectron spectroscopy study of electrically conducting polyaniline/polyimide blends. Polymer 41, 3253 (2000)CrossRefGoogle Scholar
  27. 27.
    S. Bhattacharyya, S.V. Subramanyam, D.L. Wise, G.E. Wnek, D.J. Trantolo, T.M. Cooper, J.D. Gresser (eds.), in Electrical and Polymer Systems: Fundamentals, Methods and Application, Marcel Dekker (New York, 1988). p. 231Google Scholar
  28. 28.
    M. Ghosh, A. Barman, A.K. Meikap, S.K. De, S. Chatterjeea, Hopping transport in HCl doped conducting polyaniline. Phys. Lett. A 260, 138 (1999). Scholar
  29. 29.
    P. Chanderasekhar (ed.), in Conducting Polymers, Fundamentals and Applications (Kluwer, 1999)Google Scholar
  30. 30.
    N.F. Mott, W.D. Twose, The theory of impurity conduction. Adv. Phys. 10, 107 (1961)ADSCrossRefGoogle Scholar
  31. 31.
    N.F. Mott, E.A. Davis, in Electronic Processes in Non-crystalline Materials (Clarendon, Oxford, 1979)Google Scholar
  32. 32.
    P.S. Abthagir, R. Saraswati, S. Sivakolunthu, Aging and thermal degradation of poly (N-methylaniline). Thermochim. Acta 411, 109 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied SciencesA P Goyal Shimla UniversityShimlaIndia
  2. 2.Department of PhysicsCareer Point UniversityHamirpurIndia

Personalised recommendations