Skip to main content

CCDN: Checkerboard Corner Detection Network for Robust Camera Calibration

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10985))

Abstract

Aiming to improve the checkerboard corner detection robustness against the images with poor quality, such as lens distortion, extreme poses, and noise, we propose a novel detection algorithm which can maintain high accuracy on inputs under multiply scenarios without any prior knowledge of the checkerboard pattern. This whole algorithm includes a checkerboard corner detection network and some post-processing techniques. The network model is a fully convolutional network with improvements of loss function and learning rate, which can deal with the images of arbitrary size and produce correspondingly-sized output with a corner score on each pixel by efficient inference and learning. Besides, in order to remove the false positives, we employ three post-processing techniques including threshold related to maximum response, non-maximum suppression, and clustering. Evaluations on two different datasets show its superior robustness, accuracy and wide applicability in quantitative comparisons with the state-of-the-art methods, like MATE, ChESS, ROCHADE and OCamCalib.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  2. Heikkila, J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000)

    Article  Google Scholar 

  3. Fiala, M., Shu, C.: Self-identifying patterns for plane-based camera calibration. Mach. Vis. Appl. 19(4), 209–216 (2008)

    Article  Google Scholar 

  4. Mallon, J., Whelan, P.F.: Which pattern? Biasing aspects of planar calibration patterns and detection methods. Pattern Recognit. Lett. 28(8), 921–930 (2007)

    Article  Google Scholar 

  5. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the Fourth Alvey Vision Conference, Manchester, UK, vol. 15, pp. 147–151 (1988)

    Google Scholar 

  6. Smith, S.M., Brady, J.M.: SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  7. Su, J., Duan, X., Xiao, J.: Fast detection method of checkerboard corners based on the combination of template matching and Harris Operator. In: International Conference on Information Science and Technology (ICIST) 2013, pp. 858–861. IEEE (2013)

    Google Scholar 

  8. Zhu, W., et al.: A fast and accurate algorithm for chessboard corner detection. In: Proceedings of the IEEE 2nd International Congress on Image and Signal Processing (CISP 2009), Tianjin, China, pp. 1–5 (2009)

    Google Scholar 

  9. Wang, Z., et al.: Recognition and location of the internal corners of planar checkerboard calibration pattern image. Appl. Math. Comput. 185(2), 894–906 (2007)

    MATH  Google Scholar 

  10. Bennett, S., Lasenby, J.: ChESS—Quick and robust detection of chess-board features. Comput. Vis. Image Underst. 118, 197–210 (2014)

    Article  Google Scholar 

  11. Vezhnevets, V.: OpenCV calibration object detection. Part of the Free Open-Source OpenCV Image Processing Library (2016)

    Google Scholar 

  12. Rufli, M., Scaramuzza, D., Siegwart, R.: Automatic detection of checkerboards on blurred and distorted images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, IROS 2008, pp. 3121–3126. IEEE (2008)

    Google Scholar 

  13. Placht, S., Fürsattel, P., Mengue, E.A., Hofmann, H., Schaller, C., Balda, M., Angelopoulou, E.: ROCHADE: robust checkerboard advanced detection for camera calibration. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 766–779. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_50

    Chapter  Google Scholar 

  14. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  15. Rosten, E., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    Article  Google Scholar 

  16. Donné, S., et al.: MATE: Machine learning for adaptive calibration template detection. Sensors 16(11), 1858 (2016)

    Article  Google Scholar 

  17. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of 27th International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  19. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  20. Redmon, J., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  21. Sermanet, P., et al.: Overfeat: integrated recognition, localization and detection using convolutional networks. In: ICLR (2014)

    Google Scholar 

  22. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  23. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16, 265–283 (2016)

    Google Scholar 

  24. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)

    Google Scholar 

  25. Lucchese, L., Mitra, S. K.: Using saddle points for subpixel feature detection in camera calibration targets. In: Proceedings of the IEEE 2002 Asia-Pacific Conference on Circuits and Systems, Bali, Indonesia, pp. 191–195 (2002)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the National Natural Science Foundation of China (Grant No. 51335004 and No. 91648203) and the International Science & Technology Cooperation Program of China (Grant No. 2016YFE0113600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihua Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, B., Xiong, C., Zhang, Q. (2018). CCDN: Checkerboard Corner Detection Network for Robust Camera Calibration. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds) Intelligent Robotics and Applications. ICIRA 2018. Lecture Notes in Computer Science(), vol 10985. Springer, Cham. https://doi.org/10.1007/978-3-319-97589-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97589-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97588-7

  • Online ISBN: 978-3-319-97589-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics