Skip to main content

Stretchable Tactile and Bio-potential Sensors for Human-Machine Interaction: A Review

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10984))

Abstract

Human machine interaction (HMI) technologies have been widely applied to the fields of the complicated task assignment, biological health monitoring, prosthesis techniques, and clinical medicine. In this paper, different kinds of HMI modes are reviewed, such as tactile sensors, biological sensors, and multi-sensory data. Stretchable electronics integrated with multi-function sensors on the polydimethylsiloxane (PDMS) substrate are laminated onto the skin surface for collecting temperature, strain, pressure, biological signals simultaneously. More conformable and natural human-machine interaction methods would be realized, which will provide effective ways for human-robot interaction similar to human-to-human interaction, and finally drive the development of the coexisting-cooperative-cognitive robot (Tri-Co Robot) technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Uchida, S., Mori, A., Kurazume, R., Rin-Ichiro, T., Hasegawa, T., Sakoe, H.: Early Recognition and Prediction of Gestures for Proactive Human-Machine Interface. Technical report of IEICE PRMU, vol. 104, pp. 7–12 (2004)

    Google Scholar 

  2. Wang, X., Dong, L., Zhang, H., Yu, R., Pan, C., Wang, Z.L.: Recent progress in electronic skin. Adv. Sci. 2, 1–21 (2015)

    Google Scholar 

  3. Hammock, M.L., Chortos, A., Tee, B.C., Tok, J.B., Bao, Z.: 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013)

    Article  Google Scholar 

  4. Lipomi, D.J., et al.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011)

    Article  Google Scholar 

  5. Kim, D.H., et al.: Epidermal electronics. Science 333, 838–843 (2011)

    Article  Google Scholar 

  6. Mannsfeld, S.C., et al.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010)

    Article  Google Scholar 

  7. Tee, B.C., Wang, C., Allen, R., Bao, Z.: An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012)

    Article  Google Scholar 

  8. Shriver, S., Toth, A., Zhu, X., Rudnicky, A., Rosenfeld, R.: A unified design for human-machine voice interaction, pp. 247–248 (2001)

    Google Scholar 

  9. Wentao, D., Chen, Z., Wei, H., Lin, X., Yong’an, H.: Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry. J. Semicond. 39, 014001 (2018)

    Article  Google Scholar 

  10. Dong, W., Zhu, C., Wang, Y., Xiao, L., Ye, D., Huang, Y.: Stretchable sEMG electrodes conformally laminated on skin for continuous electrophysiological monitoring. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 77–86. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_8

    Chapter  Google Scholar 

  11. Jeong, J.W., et al.: Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthc. Mater. 3, 642–648 (2014)

    Article  Google Scholar 

  12. Mishra, S., et al.: Soft, conformal bioelectronics for a wireless human-wheelchair interface. Biosens. Bioelectron. 91, 796–803 (2017)

    Article  Google Scholar 

  13. Kim, J., et al.: Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014)

    Article  Google Scholar 

  14. Wang, F.: Soft tactile sensors for human-machine interaction. In: Tao, X. (ed.) Handbook of Smart Textiles. Springer, Singapore (2015). https://doi.org/10.1007/978-981-4451-45-1_26

    Chapter  Google Scholar 

  15. Yu, P., Liu, W., Gu, C., Cheng, X., Fu, X.: Flexible piezoelectric tactile sensor array for dynamic three-axis force measurement. Sensors 16, 819 (2016)

    Article  Google Scholar 

  16. Gao, L., et al.: Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 5, 4938 (2014)

    Article  Google Scholar 

  17. Pradel, K.C., Wu, W., Ding, Y., Wang, Z.L.: Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. Nano Lett. 14, 6897–6905 (2014)

    Article  Google Scholar 

  18. Dong, W., Xiao, L., Hu, W., Zhu, C., Huang, Y., Yin, Z.: Wearable human–machine interface based on PVDF piezoelectric sensor. Trans. Instit. Meas. Control 39, 398–403 (2017)

    Article  Google Scholar 

  19. Takei, K., et al.: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821–826 (2010)

    Article  Google Scholar 

  20. Ying, M., et al.: Silicon nanomembranes for fingertip electronics. Nanotechnology 23, 344004 (2012)

    Article  Google Scholar 

  21. Jeong, S.H., Zhang, S., Hjort, K., Hilborn, J., Wu, Z.: PDMS‐based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv. Mater. (2016)

    Google Scholar 

  22. Liu, Y., et al.: Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances 2, e1601185–e1601185 (2016)

    Article  Google Scholar 

  23. Jeong, J.W., et al.: Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013)

    Article  Google Scholar 

  24. Zhou, Y., Wang, Y., Liu. R., Lin, X., Zhang, Q., Huang, Y.: Multichannel noninvasive human–machine interface via stretchable µ m thick sEMG patches for robot manipulation. J.Micromech. Microeng. 28, 014005 (2018)

    Google Scholar 

  25. Jin, L., Xian, H., Jiang, Y., Niu, Q., Xu, M., Yang, D.: Research on evaluation model for secondary task driving safety based on driver eye movements. Adv. Mech. Eng. 6, 624561 (2015)

    Article  Google Scholar 

  26. Sigari, M.-H., Pourshahabi, M.-R., Soryani, M., Fathy, M.: A review on driver face monitoring systems for fatigue and distraction detection. Int. J. Adv. Sci. Technol. 64, 73–100 (2014)

    Article  Google Scholar 

  27. Guo, X., et al.: A human-machine interface based on single channel EOG and patchable sensor. Biomed. Signal Process. Control 30, 98–105 (2016)

    Article  Google Scholar 

  28. Wolpaw, J.R., et al.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8, 164–173 (2000)

    Article  Google Scholar 

  29. Norton, J.J., et al.: Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl. Acad. Sci. U.S.A. 112, 3920 (2015)

    Article  Google Scholar 

  30. Xu, B., et al.: An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 28, 4462–4471 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

The authors also acknowledge supports from the National Natural Science Foundation of China (51635007), Program for HUST Academic Frontier Youth Team, and Special Project of Technology Innovation of Hubei Province. (2017AAA002). The authors would like to thank Flexible Electronics Manufacturing Laboratory in Comprehensive Experiment Center for Advanced Manufacturing and Equipment Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongAn Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, W., Huang, Y., Yin, Z., Zhou, Y., Chen, J. (2018). Stretchable Tactile and Bio-potential Sensors for Human-Machine Interaction: A Review. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds) Intelligent Robotics and Applications. ICIRA 2018. Lecture Notes in Computer Science(), vol 10984. Springer, Cham. https://doi.org/10.1007/978-3-319-97586-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97586-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97585-6

  • Online ISBN: 978-3-319-97586-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics