Skip to main content

Dissipative Systems

  • Chapter
  • First Online:
Quantum Signatures of Chaos

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 1153 Accesses

Abstract

Regular classical trajectories of dissipative systems eventually end up on limit cycles or settle on fixed points. Chaotic trajectories, on the other hand, approach so-called strange attractors whose geometry is determined by Cantor sets and their fractal dimension. In analogy with the Hamiltonian case, the two classical possibilities of simple and strange attractors are washed out by quantum fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of clarity, the unit matrix is denoted by 1 here.

  2. 2.

    For the purpose of this section, the tetradic nature of D is irrelevant; to simplify words and formulas, we shall speak of eigenvectors rather than eigen-matrices and write | 〉 rather than | 〉〉 for the basis kets.

  3. 3.

    The subsequent discussion refers to discrete-time maps but would proceed in complete analogy for generators of infinitesimal time translations of autonomous systems.

  4. 4.

    Throughout Sect. 12.11 the classical unit of action Iτ will be set equal to unity. Consequently, the symbol ħ will denote Planck’s constant in units Iτ.

  5. 5.

    The reader should not be confused by the double meaning of Θ: While denoting the independent variable of wave-functions in (12.11.19), the symbol Θ otherwise refers to the angle coordinate of the rotator as a quantum operator.

References

  1. U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  2. D. Braun, Dissipative Quantum Chaos and Decoherence. Springer Tracts in Modern Physics, vol. 172 (Springer, Berlin, 2001)

    Google Scholar 

  3. R. Graham, F. Haake, Quantum Statistics in Optics and Solid State Physics. Springer Tracts in Modern Physics, vol. 66 (Springer, Berlin/Heidelberg, 1973)

    Google Scholar 

  4. H. Spohn, Rev. Mod. Phys. 53, 569 (1980)

    Article  ADS  Google Scholar 

  5. F. Haake, Z. Phys. B48, 31 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Haake, R. Reibold, Phys. Rev. A32, 2462 (1985)

    Article  ADS  Google Scholar 

  7. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)

    MATH  Google Scholar 

  8. R. Bonifacio, P. Schwendimann, F. Haake, Phys. Rev. A4, 302, 854 (1971)

    Google Scholar 

  9. M. Gross, S. Haroche, Phys. Rep. 93, 301 (1982)

    Article  ADS  Google Scholar 

  10. L.D. Landau, E.M. Lifschitz, Course of Theoretical Physics. Statistical Physics, vol. 5 (Pergamon, London, 1952)

    Google Scholar 

  11. P.A. Braun, D. Braun, F. Haake, J. Weber, Euro. Phys. J. D2, 165 (1998)

    ADS  Google Scholar 

  12. P.A. Braun, D. Braun, F. Haake, Eur. Phys. J. D3, 1 (1998)

    ADS  Google Scholar 

  13. D. Braun, P.A. Braun, F. Haake, Physica D131, 265 (1999)

    ADS  Google Scholar 

  14. D. Braun, P.A. Braun, F. Haake, Opt. Comm.179, 195 (2000); in P. Blanchard, D. Giulini, E. Joos, C. Kiefer, I.O. Stamatescu (eds.), Decoherence: Theoretical, Experimental, and Conceptual Problems (Springer, Berlin, 2000)

    Google Scholar 

  15. A.J. Leggett, Prog. Th. Phys. Suppl. 69, 80 (1980)

    Article  ADS  Google Scholar 

  16. A.O. Caldeira, A.J. Leggett, Ann. Phys. (NY) 149, 374 (1983)

    Article  ADS  Google Scholar 

  17. F. Haake, D.F. Walls, Phys. Rev. A36, 730 (1987)

    Article  ADS  Google Scholar 

  18. W.H. Zurek, Phys. Rev. D24, 1516 (1981); D26, 1862 (1982); Physics Today 44, 36 (1991); Prog. Th. Phys. 89, 281 (1993)

    Google Scholar 

  19. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlin, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 77, 4887 (1996); S. Haroche: Physics Today 51, 36 (1998)

    Google Scholar 

  20. R. Grobe, F. Haake, Z. Phys. B68, 503 (1987); Lect. Notes Phys. 282, 267 (1987)

    Google Scholar 

  21. R.R. Puri, G.S. Agarwal, Phys. Rev. A33, 3610 (1986)

    Article  ADS  Google Scholar 

  22. S.M. Barnett, P.L. Knight, Phys. Rev. A33, 2444 (1986)

    Article  ADS  Google Scholar 

  23. R. Grobe, F. Haake, H.-J. Sommers, Phys. Rev. Lett. 61, 1899 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  24. L.E. Reichl, Z.-Y. Chen, M. Millonas, Phys. Rev. Lett. 63, 2013 (1989)

    Article  ADS  Google Scholar 

  25. J. Ginibre, J. Math. Phys. 6, 440 (1965)

    Article  ADS  Google Scholar 

  26. M.L. Mehta, Random Matrices (Academic, New York, 1967; 2nd edition 1991; 3rd edn. Elsevier, 2004)

    Google Scholar 

  27. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York 1970)

    MATH  Google Scholar 

  28. N. Lehmann, H.-J. Sommers, Phys. Rev. Lett. 67, 941 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Grobe, F. Haake, Phys. Rev. Lett. 62, 2889 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Grobe, Ph.D. Thesis, Essen (1989)

    Google Scholar 

  31. L. Onsager, Phys. Rev. 37, 405 (1931) and Phys. Rev. 38, 2265 (1931)

    Google Scholar 

  32. G.S. Agarwal, Z. Phys. 258, 409 (1973)

    Google Scholar 

  33. H.J. Carmichael, D.F. Walls, Z. Phys. B23, 299 (1976)

    ADS  Google Scholar 

  34. G.M. Zaslavski, Phys. Lett. 69A, 145 (1978)

    Article  ADS  Google Scholar 

  35. G.M. Zaslavski, Kh.-R.Ya. Rachko, Sov. Phys. JETP 49, 1039 (1979)

    ADS  Google Scholar 

  36. T. Dittrich, R. Graham, Ann. Phys. 200, 363 (1990)

    Article  ADS  Google Scholar 

  37. F.T. Arecchi, E. Courtens, G. Gilmore, H. Thomas, Phys. Rev. A6, 2211 (1972)

    Article  ADS  Google Scholar 

  38. R. Glauber, F. Haake, Phys. Rev. A13, 357 (1976)

    Article  ADS  Google Scholar 

  39. R.J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963)

    Google Scholar 

  40. D.F. Walls, G. Milburn, Phys. Rev. A31, 2403 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haake, F., Gnutzmann, S., Kuś, M. (2018). Dissipative Systems. In: Quantum Signatures of Chaos. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-97580-1_12

Download citation

Publish with us

Policies and ethics