Skip to main content

Semiclassical Roles for Classical Orbits

  • Chapter
  • First Online:
Quantum Signatures of Chaos

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 1172 Accesses

Abstract

The precursor of quantum mechanics due to Bohr and Sommerfeld was already seen by Einstein as applicable only to classically integrable dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this chapter, \(\sqrt {\mathrm {i}}=\mathrm {e}^{\mathrm {i}\pi /4}\) will be understood.

  2. 2.

    Formally, the contribution of the αth classical path can be seen as arising from a Gaussian integral of the type (5.13.22) after analytic continuation to purely imaginary exponents; that continuation, achieved by the Fresnel integral (10.2.12), brings about the modulus operation and the ν α phase factors e−iπ∕2 in (10.2.13).

  3. 3.

    This is equally valid in continuous time; if we let n →, τ → 0 with  = t fixed, S (n, α)(q, q′) → S α(q, q′, t).

  4. 4.

    When the eigenvalues of are ordered as \(g^{(i+1)}_1\leq g^{(i+1)}_2\leq \ldots \leq g^{(i+1)}_i\) and those of as \(g^{(i)}_1\leq g^{(i)}_2\leq \ldots \leq g^{(i)}_{i-1}\) the corollary to the minimax theorem in question yields \(g^{(i+1)}_1\leq g^{(i)}_1\leq g^{(i+1)}_2\leq g^{(i)}_2\leq \ldots g^{(i)}_{i-1}\leq g^{(i+1)}_i\).

  5. 5.

    Somewhat arbitrarily but consistently, we shall speak of Morse indices in propagators and Maslov indices in trace formulae.

  6. 6.

    Should such nongeneric a disaster happen, there is a way out shown by Maslov: one changes to, say, the momentum representation; see next section.

  7. 7.

    Remarkably, the semiclassically approximate equality in (10.3.7) becomes a rigorous equality for the cat map , as was shown by Keating in Ref. [23].

  8. 8.

    Subtract and then divide by the product (1∕2π)2 of two mean densities, take out the delta function provided by the self-correlation terms , and change the overall sign.

  9. 9.

    The structures of (10.2.25) and (10.3.15) are similar; one might see the difference as the result of an extension of the phase space by inclusion of the pair E, t.

  10. 10.

    While this generalization is suggested by the very appearance of the prefactor in (10.3.15) and the previous footnote, and thus easy to guess, serious work is needed to actually verify the result.

  11. 11.

    Note that in contrast to the preceding chapter we here use the same symbol M for the stability matrix of maps and flows.

  12. 12.

    Departing from the convention mostly adhered to in this book, here we do not restrict ourselves to Hilbert spaces with the finite dimension N and thus do not write a factor 1∕N into the density of levels; the reader is always well advised to check from the context on the normalization of ϱ(E).

  13. 13.

    The stable and unstable manifolds of a periodic orbit are defined as the sets of points which the dynamics asymptotically carries toward the orbit as, respectively, t → + and t →−; the reader is kindly asked to think for a moment about why L s , as well as the unstable manifold L u, are f-dimensional.

  14. 14.

    In this subsection, it would seem overly pedantic to insist on the name Morse phase or index for wave functions or propagators, reserving the name Maslov index for what appears in traces of propagators; as a compromise we speak here of Morse alias Maslov phases for multibranch wave functions or propagators.

  15. 15.

    For simplicity, we specialize to two-freedom systems from hereon; there is only a single Lyapunov exponent λ p for the pth orbit then.

  16. 16.

    As already pointed out in the footnote accompanying the definition (5.20.3) of the two-point correlator, two averages are needed to produce at least a piecewise constant function with step heights, upwards or downwards, of order \(\frac {1}{N}\). One of these is over the center energy as discussed here; the second, not worked into the formulae here in order to save space can be over a small window for the offset variable e.

  17. 17.

    Some authors prefer to absorb the Maslov phase factor in the stability amplitude which then becomes complex.

  18. 18.

    Keating and Müller [58] give reasons for which one can hope that the “exponentially small” corrections \(\propto \int _{T_H/2}^\infty dT(\ldots )\) even vanish identically.

  19. 19.

    We must apologize for using the tilde on one of these two symbols which in contrast to everywhere else in this book does not mean transposition.

  20. 20.

    Grassmann algebra and Grassmann integrals will accompany us in the remainder of this chapter. The reader may want to refresh versatility with these techniques by a glance at Sect. 5.13.

  21. 21.

    The matrices U, V have appeared in Sects. 6.6, 6.9, and 8.8 under the names A, D.

  22. 22.

    Transposition of a supermatrix involves interchanging the indices of the matrix elements and afterwards flipping the sign of the lower left elements in each 2 × 2 block.

References

  1. A. Einstein, Verh. Dt. Phys. Ges. 19, 82 (1917)

    Google Scholar 

  2. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990)

    Book  Google Scholar 

  3. M.C. Gutzwiller, J. Math. Phys. 12, 343 (1971)

    Article  ADS  Google Scholar 

  4. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, G. Vattay, Chaos: Classical and Quantum (Niels Bohr Institute, Copenhagen, 2005). www.ChaosBook.org

  5. M. Brack, R.K. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, MA, 1997)

    MATH  Google Scholar 

  6. S. Müller, S. Heusler, A. Altland, P. Braun, F. Haake, New J. Phys. 11, 103025 (2009) and arXiv:0906.1960v1[lin.CD] (19 Jun 2009)

    Google Scholar 

  7. K. Richter, M. Sieber, Phys. Rev. Lett. 89, 206801 (2002)

    Article  ADS  Google Scholar 

  8. H. Schanz, M. Puhlmann, T. Geisel, Phys. Rev. Lett. 91, 134101 (2003)

    Article  ADS  Google Scholar 

  9. O. Zaitsev, D. Frustaglia, K. Richter, Phys. Rev. Lett. 94, 026809 (2005)

    Article  ADS  Google Scholar 

  10. R.S. Whitney, P. Jacquod, Phys. Rev. Lett. 94, 116801 (2005); ibid. 96, 206804 (2006)

    Google Scholar 

  11. S. Heusler, S. Müller, P. Braun, F. Haake, Phys. Rev. Lett 96, 066804 (2006)

    Article  ADS  Google Scholar 

  12. P. Braun, S. Heusler, S. Müller, F. Haake, J. Phys. A 39, L159 (2006)

    Google Scholar 

  13. S. Müller, S. Heusler, P. Braun, F. Haake, New J. Phys. 9, 12 (2007)

    Article  ADS  Google Scholar 

  14. P. Brouwer, S. Rahav, Phys. Rev. Lett. 96, 196804 (2006)

    Article  ADS  Google Scholar 

  15. P. Brouwer, A. Altland, Phys. Rev. B78, 075304 (2008)

    Article  ADS  Google Scholar 

  16. L.S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981)

    Book  Google Scholar 

  17. G. Junker, H. Leschke, Physica 56D, 135 (1992)

    ADS  Google Scholar 

  18. M. Tabor, Physica 6D,195 (1983)

    ADS  Google Scholar 

  19. R. Courant, D. Hilbert, Methoden der Mathematischen Physik, 3. Aufl. (Springer, Berlin, 1968); R. Bellmann, Introduction to Matrix Analysis, 2nd edn. (McGraw-Hill, New York, 1970)

    Google Scholar 

  20. S. Levit, K. Möhring, U. Smilansky, T. Dreyfus, Ann. Phys. 114, 223 (1978); S. Levit, U. Smilansky, Ann. Phys. 103, 198 (1977); ibid. 108, 165 (1977); K. Möhring, S. Levit, U. Smilansky, Ann. Phys. 127, 198 (1980)

    Google Scholar 

  21. M. Morse, Variational Analysis (Wiley, New York, 1973)

    MATH  Google Scholar 

  22. R.G. Littlejohn, J. Math. Phys. 31, 2952 (1990); J. Stat. Phys. 68, 7 (1992)

    Google Scholar 

  23. J.P. Keating, Nonlinearity 4, 309 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  24. E.T. Copson, Asymptotic Expansions (Cambridge University Press, Cambridge, 1965)

    Book  Google Scholar 

  25. H.P. Baltes, E.R. Hilf, Spectra of Finite Systems (BI Wissenschaftsverlag, Mannheim, 1976)

    Google Scholar 

  26. R. Balian, F. Bloch, Ann. Phys. (USA) 63, 592 (1971)

    Article  ADS  Google Scholar 

  27. M.V. Berry, C.J. Howls, Proc. R. Soc. Lond. A447, 527 (1994)

    Article  ADS  Google Scholar 

  28. K. Stewartson, R.T. Waechter, Proc. Camb. Phil. Soc. 69, 353 (1971)

    Article  ADS  Google Scholar 

  29. H. Primack, U. Smilansky, J. Phys. A31, 6253 (1998); H. Primack, U. Smilansky, Phys. Rev. Lett. 74,4831 (1995); H. Primack, Ph.D. Thesis, The Weizman Institute of Science, Rehovot (19997)

    Google Scholar 

  30. P. Gaspard, Prog. Theor. Phys. Suppl. 116, 59 (1994); P. Gaspard, D. Alonso, Phys. Rev. A47, R3468 (1993); D. Alonso, P. Gaspard, Chaos 3, 601 (1993)

    Google Scholar 

  31. T. Prosen, Phys. Lett. A223, 323 (1997)

    Article  ADS  Google Scholar 

  32. N.L. Balazs, A. Voros, Phys. Rep. 143, 109 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Kottos, U. Smilansky, Ann. Phys. 274, 76 (1999); T. Kottos, U. Smilansky:chao-dyn/9906008; H. Schanz, U. Smilansky, Proceedings of the Australian Summer School on Quantum Chaos and Mesoscopics, Canberra Australia, Jan 1999

    Article  ADS  Google Scholar 

  34. M.V. Berry, J.P. Keating, J. Phys. A23, 4839 (1990)

    ADS  Google Scholar 

  35. J.P. Keating, Proc. R. Soc. Lond. A436, 99 (1992)

    Article  ADS  Google Scholar 

  36. M.V. Berry, J.P. Keating, Proc. R. Soc. Lond. A437, 151 (1992)

    Article  ADS  Google Scholar 

  37. B. Eckhardt, E. Aurell, Europhys. Lett. 9, 509 (1989)

    Article  ADS  Google Scholar 

  38. E.B. Bogomolny, Nonlinearity 5, 805 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  39. E. Doron, U. Smilansky, Nonlinearity 5, 1055 (1995); H. Schanz, U. Smilansky, Chaos, Solitons Fractals 5, 1289 (1995); U. Smilansky, in E. Akkermans, G. Montambaux, J.L. Pichard, Proceedings of the 1994 Summer School on “Mesoscopic Quantum Physics” (North Holland, Amsterdam, 1991); B. Dietz, U. Smilansky, Chaos 3, 581 (1993); C. Rouvinez, U. Smilansky, J. Phys. A28, 77 (1994)

    Google Scholar 

  40. E.G. Vergini, J. Phys. A33, 4709 (2000); E.G. Vergini, G.G. Carlo, J. Phys. A33, 4717 (2000)

    Google Scholar 

  41. S.C. Creagh, J.M. Robbins, R.G. Littlejohn, Phys. Rev. A42, 1907 (1990)

    Article  ADS  Google Scholar 

  42. I.C. Percival, Adv. Chem. Phys. 36, 1 (1977)

    Google Scholar 

  43. J.N. Mather, Commun. Math. Phys. 94, 141 (1984)

    Article  ADS  Google Scholar 

  44. J. Robbins, Nonlinearity 4, 343 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  45. E. Bogomolny, C. Schmit, Nonlinearity 6, 523 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  46. J.P. Keating, M. Sieber, Proc. R. Soc. Lond. A447, 413 (1994)

    Article  ADS  Google Scholar 

  47. N. Argaman, F.-M. Dittes, E. Doron, J.P. Keating, A. Yu. Kitaev, M. Sieber, U. Smilansky, Phys. Rev. Lett. 71, 4326 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  48. E.B. Bogomolny, B. Georgeot, M.J. Giannoni, C. Schmit, Phys. Rev. Lett. 69 1477 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  49. P. Braun, F. Haake, J. Phys. A43 262001 (2010); arXiv:1001.3339v2 [nlinCD] (2010)

    ADS  Google Scholar 

  50. P. Braun, arXiv:1508.02075v1 [nlin.CD] (2015)

    Google Scholar 

  51. M.V. Berry, Proc. R. Soc. Lond. Ser. A 400, 229 (1985)

    Google Scholar 

  52. J.B. Conrey, D.W. Farmer, M.R. Zirnbauer, arXiv:math-ph0511024v2 (9 Sep 2007)

    Google Scholar 

  53. A. Huckleberry, A. Püttmann, M.R. Zirnbauer, arXiv:07091215v1 [math-ph] (9 Sep 2007)

    Google Scholar 

  54. S. Müller, S. Heusler, P. Braun, F. Haake, A. Altland, Phys. Rev. Lett. 93, 014103 (2004).

    Article  ADS  Google Scholar 

  55. S. Müller, S. Heusler, P. Braun, F. Haake, A. Altland, Phys. Rev. E 72, 046207 (2005)

    Google Scholar 

  56. S. Heusler, S. Müller, A. Altland, P. Braun, F. Haake, Phys. Rev. Lett. 98, 044103 (2007)

    Article  ADS  Google Scholar 

  57. M. Turek, D. Spehner, S. Müller, K. Richter, Phys. Rev. E 71, 016210 (2005)

    Google Scholar 

  58. J.P. Keating, S. M’́uller, Proc. R. Soc. A463, 3241 (2007)

    Google Scholar 

  59. M.V. Berry, Proc. R. Soc. Lond. A400, 229 (1985)

    Article  ADS  Google Scholar 

  60. M. Sieber, K. Richter, Phys. Scr. T90, 128 (2001); M. Sieber: J. Phys. A35, L613 (2002)

    Google Scholar 

  61. A.D. Sokal, J. Math. Phys. 21, 261 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  62. E.B. Bogomolny, J.P. Keating, Phys. Rev. Lett. 77, 1472 (1996)

    Article  ADS  Google Scholar 

  63. S. Keppeler, J. Phys. A33, L503

    Google Scholar 

  64. J. Bolte, S. Keppeler, J. Phys. A32, 8863 (1999)

    ADS  Google Scholar 

  65. S. Keppeler, Spinning Particles – Semiclassics and Spectral Statistics (Springer, Berlin, 2003)

    Book  Google Scholar 

  66. P. Braun, J. Phys. A45, 045102 (2012)

    ADS  Google Scholar 

  67. K. Saito, T. Nagao, Phys. Lett. A 352, 380 (2006)

    Article  ADS  Google Scholar 

  68. T. Nagao, P. Braun, S. Müller, K. Saito, S. Heusler S, F. Haake, J. Phys. A: Math. Theor. 40, 47 (2007)

    Google Scholar 

  69. J. Kuipers, M. Sieber, J. Phys. A: Math. Theor. 40, 935 (2007)

    Article  ADS  Google Scholar 

  70. T. Nagao, K. Saito, J. Phys. A 40, 12055 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  71. K. Saito, T. Nagao, P. Braun, S. Müller S, arXiv:0906.2033[nlin.CD] 11 Jun 2009

    Google Scholar 

  72. T. Nagao, S. Müller, J. Phys. A 42, 375102 (2009)

    Article  MathSciNet  Google Scholar 

  73. P. Brouwer, S. Rahav, Phys. Rev. Lett. 96 196804 (2006)

    Article  ADS  Google Scholar 

  74. R.S. Whitney, P. Jacquod, Phys. Rev. Lett. 96, 206804 (2006)

    Article  ADS  Google Scholar 

  75. G. Berkolaiko, J.M. Harrison, M. Novaes, J. Phys. A: Math. 41 365102 (2008)

    Article  Google Scholar 

  76. J. Kuipers, D. Waltner, C. Petitjean, G. Berkolaiko, K. Richter, Phys. Rev. Lett. 104, 027001 (2010) and arXiv:0907.2660v1[cond-mat.mes-hall]

    Google Scholar 

  77. A.J. Lichtenberg, M.A. Liebermann, Regular and Chaotic Dynamics. Applied Mathematical Sciences, vol. 38, 2nd edn. (Springer, New York, 1992)

    Google Scholar 

  78. M.V. Berry, M. Robnik, J. Phys. A17, 2413 (1984)

    ADS  Google Scholar 

  79. K.R. Meyer, Trans. Am. Math. Soc. 149, 95 (1970)

    Article  Google Scholar 

  80. H. Schomerus, J. Phys. A31, 4167 (1998)

    ADS  Google Scholar 

  81. A.M. Ozorio de Almeida, J.H. Hannay, J. Phys. A20, 5873 (1987)

    ADS  Google Scholar 

  82. S. Tomsovic, M. Grinberg, D. Ullmo, Phys. Rev. Lett. 75, 4346 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  83. D. Ullmo, M. Grinberg, S. Tomsovic, Phys. Rev. E54, 136 (1996)

    ADS  Google Scholar 

  84. M. Sieber, J. Phys. A29, 4715 (1996)

    ADS  MathSciNet  Google Scholar 

  85. H. Schomerus, M. Sieber, J. Phys. A30, 4537 (1997)

    ADS  Google Scholar 

  86. H. Schomerus: Europhys. Lett. 38, 423 (1997)

    Article  ADS  Google Scholar 

  87. M. Sieber, H. Schomerus, J. Phys. A31, 165 (1998)

    ADS  Google Scholar 

  88. T. Poston, I.N. Stewart, Catastrophe Theory and its Applications (Pitman, London, 1978)

    MATH  Google Scholar 

  89. M. Kuś, F. Haake, D. Delande, Phys. Rev. Lett. 71, 2167 (1993)

    Article  ADS  Google Scholar 

  90. H. Schomerus, F. Haake, Phys. Rev. Lett. 79, 1022 (1997)

    Article  ADS  Google Scholar 

  91. M.V. Berry, J.P. Keating, S.D. Prado, J. Phys. A31, L243 (1998)

    Google Scholar 

  92. C. Manderfeld, H. Schomerus, Phys. Rev. E63, 066208 (2001)

    ADS  Google Scholar 

  93. M.V. Berry, J.P. Keating, H. Schomerus, Proc. R. Soc. A456, 1659 (2000)

    Article  ADS  Google Scholar 

  94. M.V. Berry, in Proceedings of the International School of Physics “Enrico Fermi” Course CXLIII ed. by G. Casati, I. Guarneri, U. Smilansky (Ios Press, Amsterdam, 2000)

    Google Scholar 

  95. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  96. M. Khodas, S. Fishman, Phys. Rev. Lett. 84, 2837 (2000). arXiv:chaodyn/9910040

    Article  ADS  Google Scholar 

  97. J. Weber, F. Haake, P. Šeba, Phys. Rev. Lett. 85, 3620 (2000), and arXiv:chaodyn/0001013

    Article  ADS  Google Scholar 

  98. C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2004)

    MATH  Google Scholar 

  99. J. Weber, F. Haake, P. Braun, C. Manderfeld, P. Seba, P.A. Braun: to be published

    Google Scholar 

  100. D. Weiss, M.L. Roukes, A. Menschig, P. Grambow, K. von Klitzing, G. Weimann, Phys. Rev. Lett. 66, 2790 (1991); D. Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer, K. von Klitzing, G. Weimann, Phys. Rev. Lett. 70, 4118 (1993)

    Google Scholar 

  101. R. Fleischmann, T. Geisel, R. Ketzmerick, Phys. Rev. Lett. 68, 1367 (1992)

    Article  ADS  Google Scholar 

  102. G. Hackenbroich, F. von Oppen, Europhys. Lett. 29, 151 (1995); Z. Phys. B97, 157 (1995); K. Richter, Europhys. Lett. 29, 7 (1995)

    Google Scholar 

  103. T.M. Fromhold, L. Eaves, F.W. Sheard, M.L. Leadbeater, T.J. Foster, P.C. Main: Phys. Rev. Lett. 72, 2608 (1994); G. Mueller, G.S. Boebinger, H. Mathur, L.N. Pfeiffer, K.W. West: Phys. Rev. Lett. 75, 2875 (1995); E.E. Narimanov, A.D. Stone: Phys. Rev. B57, 9807 (1998); E.E. Narimanov, A.D. Stone: Physica D131, 221 (1999); E.E. Narimanov, A.D. Stone, G.S. Boebinger: Phys. Rev. Lett. 80, 4024 (1998)

    Google Scholar 

  104. A. Mekis, J.U. Nöckel, G. Chen, A.D. Stone, R.K. Chang, Phys. Rev. Lett. 75, 2682 (1995); J.U. Nöckel, A.D. Stone, Nature 385, 47 (1997); C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, D.A. Stone, J. Faist, D.L. Sivco, A.Y. Cho, Science 280, 1493 (1998); E.E. Narimanov, G. Hackenbroich, P. Jacquod, A.D. Stone, Phys. Rev. Lett. 83, 4991 (1999)

    Google Scholar 

  105. M. Brack, S.M. Reimann, M. Sieber, Phys. Rev. Lett. 79, 1817 (1997)

    Article  ADS  Google Scholar 

  106. J. Main, G. Wunner, Phys. Rev. A55, 1743 (1997)

    Article  ADS  Google Scholar 

  107. M. Fließer, A. Csordás, P. Szépfalusy, R. Graham, Phys. Rev. A56, R2533 (1997); ibid. A56, 4879 (1997); M. Fließer, R. Graham: Phys. Rev. A59, R27 (1999); Physica D131, 141 (1999); M. Fließer, Dissertation, Essen (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haake, F., Gnutzmann, S., Kuś, M. (2018). Semiclassical Roles for Classical Orbits. In: Quantum Signatures of Chaos. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-97580-1_10

Download citation

Publish with us

Policies and ethics