Skip to main content

WP-D: Environmental Information System

  • Chapter
  • First Online:
Chinese Water Systems

Part of the book series: Terrestrial Environmental Sciences ((TERENVSC))

Abstract

The previous chapters gave detailed insight into the collection of environmental data and the use of that data for purposes such as determining and improving water quality, dealing with extreme weather events, or the planning of waste water management systems. However, adequate visualisation techniques are required to communicate the significance of this work and the consequences of research results to stakeholders or laymen. In addition, sustainable management of water resources requires well-engineered software solutions that can be operated by regional authorities and operating companies. To this end, the “Urban Catchments”-project includes the adaption and adjustment of software frameworks for the region around Chao Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bilke L, Fischer T, and Helbig C et al. TESSIN VISLab - laboratory for scientific visualization. Environ. Earth Sci. 72(10), 3881–3899 (2014). https://doi.org/10.1007/s12665-014-3785-5

    Article  Google Scholar 

  • Blöcher G, Cacace M, Reinsch T, and Watanabe N. Evaluation of three exploitation concepts for a deep geothermal system in the North German Basin. Comput. Geosci. 82, 120–129 (2015)

    Article  Google Scholar 

  • Burchard H, and Bolding K. GETM – A General Estuarine Transport Model. Scientific Documentation. Technical Report EUR 20253 EN, European Commission (2002)

    Google Scholar 

  • Chen Y, and Liu QQ. On the horizontal distribution of algal-bloom in Chaohu Lake and its formation process. Acta. Mech. Sin. 30(5), 656–666 (2014)

    Article  Google Scholar 

  • Chen M, Lin H, Wen Y, He L, and Hu M. Sino-VirtualMoon: a 3D web platform using Chang’e-1 data for collaborative research. Planet. Space Sci. 65, 130–136 (2012)

    Article  Google Scholar 

  • Chen M, Lin H, Wen Y, He L, and Hu M. Construction of a virtual lunar environment platform. Int. J. Digital Earth 6(5), 469–482 (2013). https://doi.org/10.1080/17538947.2011.628415

    Article  Google Scholar 

  • Chen C, Börnick H, Cai Q, Dai X, Jähnig SC, Kong Y, Krebs P, Kuenzer C, Kunstmann H, Liu Y, Nixdorf E, Pang Z, Rode M, Schueth C, Song Y, Yue T, Zhou K, Zhang J, and Kolditz O. Challenges and opportunities of German-Chinese cooperation in water science and technology. Environ. Earth Sci. 73(8), 4861–4871 (2015a). ISSN 1866-6299. https://doi.org/10.1007/s12665-015-4149-5

    Article  Google Scholar 

  • Chen M, Lin H, Kolditz O, and Chen C. Developing dynamic virtual geographic environments (VGEs) for geographic research. Environ. Earth Sci. 74(10), 6975–6980 (2015b). ISSN 1866-6299. https://doi.org/10.1007/s12665-015-4761-4

    Article  Google Scholar 

  • Chen J, Chen J, and Liao A et al. Global land cover mapping at 30 m resolution: a POK-based operational approch. ISPRES J. Photogrammetry Remote Sens. 103, 7–27 (2015c)

    Article  Google Scholar 

  • Dohmann M, Chen C, Grambow M, Kolditz O, Krebs P, Schmidt KR, Subklew G, Tiehm A, Wermter P, Dai XH, Liao ZL, Meng W, Song YH, Yin D, and Zheng BH. German contributions to the Major Water Program in China: “Innovation Cluster-Major Water”. Environ. Earth Sci. 75(8), 703 (2016). ISSN 1866-6299. https://doi.org/10.1007/s12665-016-5504-x

  • Fletcher K. Sentinel-3 – ESA’s Global Land and Ocean Mission for GMES Operational Services. Technical Report ESA SP-1322/3, European Space Agency (2012)

    Google Scholar 

  • Goldstone W. Unity 3.x Game Development Essentials, 2nd edn. (Packt Publishing, Birmingham, 2011)

    Google Scholar 

  • Google Earth, Chao Lake, Anhui Province, China. Google Inc., Earthstar Geographics, CNES/Airbus DS, 2016. Accessed 26 Sept 2016

    Google Scholar 

  • Helbig C, Bauer H-S, Rink K, Wulfmeyer V, Frank M, and Kolditz O. Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environ. Earth Sci. 72(10), 3767–3780 (2014). ISSN 1866-6299. https://doi.org/10.1007/s12665-014-3136-6

    Article  Google Scholar 

  • Helbig C, Dransch D, and Böttinger M et al. Challenges and strategies for the visual exploration of complex environmental data. Int. J. Digital Earth pp. 1–7 (2017). https://doi.org/10.1080/17538947.2017.1327618

    Article  Google Scholar 

  • Koch F, Bilke L, Helbig C, and Schlink U. Compact or cool? The impact of brownfield redevelopment on inner-city micro climate. Sustain. Cities Soc. 38, 31–41 (2018). ISSN 2210-6707. https://doi.org/10.1016/j.scs.2017.11.021

    Article  Google Scholar 

  • Kolditz O, Rink K, and Shao H et al. International viewpoint and news: data and modelling platforms in environmental earth sciences. Environ. Earth Sci. 66(4), 1279–1284 (2012a). https://doi.org/10.1007/s12665-012-1661-8

    Article  Google Scholar 

  • Kolditz O, Bauer S, and Bilke L et al. OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 67(2), 589–599 (2012b). https://doi.org/10.1007/s12665-012-1546-x

    Article  CAS  Google Scholar 

  • Li X-G, He H-Y, and Sun Q-F. The shallow groundwater pollutions assessment of west Liaohe plain (eastern). J. Chem. Pharm. Res. 5(11), 290–295 (2013)

    Google Scholar 

  • Liao Z, Zhi G, Zhou Y, Xu Z, and Rink K. To analyze the urban water pollution discharge system using the tracking and tracing approach. Environ. Earth Sci. 75(14), 1080 (2016). ISSN 1866-6299. https://doi.org/10.1007/s12665-016-5881-1

  • Lin H, Chen M, and Lu G. Virtual geographic environment: a workspace for computer-aided geographic experiments. Ann. Assoc. Am. Geogr. 103(3), 465–482 (2013a). https://doi.org/10.1080/00045608.2012.689234

    Article  Google Scholar 

  • Lin H, Chen M, Lu G, Zhu Q, Gong J, You X, Wen Y, Xu B, and Hu M. Virtual geographic environments (VGEs): a new generation of geographic analysis tool. Earth-Sci. Rev. 126, 74–84 (2013b). ISSN 0012-8252. https://doi.org/10.1016/j.earscirev.2013.08.001

    Article  Google Scholar 

  • Lin H, Batty M, Jørgensen SE, Fu B, Konecny M, Voinov A, Torrens P, Lu G, Zhu A-X, Wilson JP, Gong J, Kolditz O, Bandrova T, and Chen M. Virtual environments begin to embrace process-based geographic analysis. Trans. GIS 19(4), 493–498 (2015). ISSN 1467-9671. https://doi.org/10.1111/tgis.12167

    Article  Google Scholar 

  • Lü G. Geographic analysis-oriented virtual geographic environment: framework, structure and functions. Sci. China Earth Sci. 54(5), 733–743 (2011). ISSN 1869-1897. https://doi.org/10.1007/s11430-011-4193-2

    Article  Google Scholar 

  • Michalakes J, Dudhia J, and Gill D. The weather research and forecast model: software architecture and performance, in Proceedings of Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology. (World Scientific, Singapore, 2005), pp. 25–29. ISBN ISBN 978-9812563545

    Google Scholar 

  • MiddleVR Developers. MiddleVR SDK – a generic immersive virtual reality plugin (2017). Accessed 15 Feb 2017

    Google Scholar 

  • OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org (2016)

  • Rew R, and Davis G. NetCDF: an interface for scientific data access. IEEE Comput. Graphics Appl. 10(4), 76–82 (1990)

    Article  Google Scholar 

  • Rink K, Bilke L, and Kolditz O. Setting up virtual geographic environments in unity, in Proceedings of EuroVis Workshop on Visualization in Environmental Sciences, pp. 1–5. EuroGraphics Digital Library (2017). ISBN 978-3-03868-040-6. https://doi.org/10.2312/envirvis.20171096

  • Rink K, Bilke L, and Kolditz O. Visualisation strategies for environmental modelling data. Environ. Earth Sci. 72(10), 3857–3868 (2014). ISSN 1866-6299. https://doi.org/10.1007/s12665-013-2970-2

    Article  Google Scholar 

  • Rink K, Fischer T, Selle B, and Kolditz O. A data exploration framework for validation and setup of hydrological models. Environmental Earth Sciences 69(2), 469–477 (2013). https://doi.org/10.1007/s12665-012-2030-3

    Article  Google Scholar 

  • Rossman L. SWMM-CAT User’s Guide. Technical Report EPA 600-R-14-428, Environmental Protection Agency (2014)

    Google Scholar 

  • Schroeder W, Martin K, and Lorensen B. Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th edn. (Kitware Inc., New York, 2006)

    Google Scholar 

  • Tachikawa T, Kaku M, and Iwasaki A et al. ASTER Global Digital Elevation Model Version 2 - Summary of Validation Results. Technical report (NASA Jet Propulsion Laboratory, California Institute of Technology, 2011)

    Google Scholar 

  • Tang DL, Kawamura H, Oh IS, and Baker J. Satellite evidence of harmful algal blooms and related oceanographic features in the Bohai Sea during autumn 1998. Adv. Space Res. 37, 681–689 (2006)

    Article  Google Scholar 

  • Walther M, Bilke L, Delfs J-O, Graf T, Grundmann J, Kolditz O, and Liedl R. Assessing the saltwater remediation potential of a three-dimensional, heterogeneous, coastal aquifer system. Environ. Earth Sci. 72(10), 3827–3837 (2014). ISSN 1866-6299. https://doi.org/10.1007/s12665-014-3253-2

    Article  CAS  Google Scholar 

  • Wang SF, Tang DL, and He FL et al. Occurrences of Harmful Algal Blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia 596, 79–93 (2008)

    Article  Google Scholar 

  • Weller HG, Tabor G, Jasak H, and Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998). ISSN 0894-1866. https://doi.org/10.1063/1.168744

    Article  Google Scholar 

  • Wulder MA, White JC, and Loveland T et al. The global landsat archive: status, consolidation, and direction. Remote Sens. Environ. 185, 271–283 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Neubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neubert, F., Haase, M., Rink, K., Kolditz, O. (2019). WP-D: Environmental Information System. In: Sachse, A., Liao, Z., Hu, W., Dai, X., Kolditz, O. (eds) Chinese Water Systems. Terrestrial Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-97568-9_6

Download citation

Publish with us

Policies and ethics