Skip to main content

Information Fusion

  • Chapter
  • First Online:

Part of the book series: Studies in Big Data ((SBD,volume 46))

Abstract

The study of information fusion comprises methods and techniques to automatically or semi-automatically combine information stemming from homogeneous or heterogeneous sources into a representation that supports a human user’s situation awareness for the purposes of decision making. Information fusion is not an end in itself but studies, adapts, applies and combines methods, techniques and algorithms provided by many other research areas, such as artificial intelligence, data mining, machine learning and optimization, in order to customize solutions for specific tasks. There are many different models for information fusion that describe the overall process as tasks building upon each other on different levels of abstraction. Information fusion includes the analysis of information, the inference of new information and the evaluation of uncertainty within the information. Hence, uncertainty management plays a vital role within the information fusion process. Uncertainty can be expressed by probability theory or, in the form of non-specificity and discord, by, for example, evidence theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. URL: http://vestibular.org/understanding-vestibular-disorder/human-balance-system

  2. Arnborg, S. (2004). Robust Bayesianism: Imprecise and paradoxical reasoning. In Proceedings of the 7th International Conference on Information Fusion (2004)

    Google Scholar 

  3. Arnborg, S. (2006). Robust Bayesianism: Relation to evidence theory. Journal of Advances in Information Fusion, 1(1), 63–74.

    Google Scholar 

  4. Bae, J., Falkman, G., Helldin, T., & Riveiro, M. (2018). Visual data analysis. In A. Said, & V. Torra (Eds.), Data Science in Practice (2018)

    Google Scholar 

  5. Blasch, E., Bossé, E., & Lambert, D. (2012). High-level information fusion management and system design (1st ed.). Norwood, MA, USA: Artech House Inc.

    Google Scholar 

  6. Blasch, E., & Plano, S.: DIFG level 5 (user refinement) issues supporting situational assessment reasoning. In International Conference on Information Fusion (2005)

    Google Scholar 

  7. Boyed, J.: The essence of winning and losing. URL http://dnipogo.org/john-r-boyd/

  8. Costa, P. C. G., Laskey, K. B., Blasch, E., & Jousselme, A. L.: Towards unbiased evaluation of uncertainty reasoning: The UREF ontology. In International Conference on Information Fusion (2012)

    Google Scholar 

  9. Dempster, A. P. (1969). A generalization of Bayesian inference. Journal of the Royal Statistical Society, 205–247. Wiley-Blackwell (1969)

    Google Scholar 

  10. Duarte, D., & Ståhl, N. (2018) Machine learning: A concise overview. In A. Said, & V. Torra (Eds.),Data Science in Practice

    Google Scholar 

  11. Endsley, M., & Kiris, E. (1995). The out-of-the-loop performance problem and level of control in automation. Human Factors: The Journal of the Human Facors and Ergonomics Society, 37, 381–394.

    Article  Google Scholar 

  12. Haenni, R.: Shedding new light on Zadeh’s criticism of Dempster’s rule of combination. In International Conference on Information Fusion, pp. 879–884

    Google Scholar 

  13. Hall, D. L., & Llinas, J. (2001). Handbook of Multisensor Data Fusion. CRC Press LLC

    Google Scholar 

  14. Hall, M., & McMullen, S. (2004). Mathematical Thechniques in Multisensor Data Fusion. Artech House

    Google Scholar 

  15. Hand, D. J., Smyth, P., & Mannila, H. (2001). Principles of Data Mining. Cambridge, MA, USA: MIT Press.

    Google Scholar 

  16. Harmanec, D., & Klir, G. J. (1994). Measuring total uncertainty in Dempster-Shafer theory: A novel approach. International Journal of General Systems, 405–419. Taylor & Francis

    Google Scholar 

  17. Jousselme, A. L., Liu, C., Grenier, D., & Bossé, É. (2006). Measuring ambiguety in the evidence theory. IEEE Transactions on Systems, Man, and Cybernetics, 890–903

    Article  Google Scholar 

  18. Jousselme, A. L., Maupin, P., & Bossé, É. (2003). Uncertainty in a situation analysis perspective. In International Conference of Information Fusion, pp. 1207–1214

    Google Scholar 

  19. Karlsson, A., Johansson, R., & Andler, S. F. (2011). Characterization and empirical evaluation of bayesian and credal combination operators. Journal of Advances in Information Fusion, 6, 150–166.

    Google Scholar 

  20. Klir, G. J. (2003). An update on generalized information theory. In International Symposium on Imprecise Probability: Theories and Applications

    Google Scholar 

  21. Klir, G. J., & Smith, R. M. (2001). On measuring uncertainty and uncertainty-based information: Recent developments. Annals of Mathematics and Artificial Intelligence

    Google Scholar 

  22. Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications. PTR, Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

  23. Sentz, K., & Ferson, S. (2002). Combination of evidence in Dempster-Shafer theory. SANDIA: Tech. rep.

    Google Scholar 

  24. Shafer, G. (1976). A mathematical theory of evidence. Princeton University Press

    Google Scholar 

  25. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  26. Smets, P. (1999). Imperfect information: Imprecision—Uncertainty. In UMIS

    Google Scholar 

  27. Smets, P. (2000). Data fusion in the transferable belief model. In Third International Conference on Information Fusion

    Google Scholar 

  28. Steinberg, A., Bowman, D., & White, F. (1999). Revisions to the JDL data fusion model. In Sensor Fusion: Architechtures, Algorithms and Applications

    Google Scholar 

  29. Torra, V., Karlsson, A., Steinhauer, H. J., & Berglund, S. (2018). Artificial intelligence. In A. Said, & V. Torra (Eds.), Data Science in Practice

    Google Scholar 

  30. Waltz, E. L. (1998). Information understanding: integrating data fusion and data mining processes. In Circuits and Systems. ISCAS’98. Proceedings of the 1998 IEEE International Symposium on, vol. 6, pp. 553–556. IEEE (1998)

    Google Scholar 

  31. Waltz, E. L., & Llinas, J. (1990). Multisensor data fusion. Norwood, MA, USA: Artech House Inc.

    Google Scholar 

  32. Winkler, R. L. (1996). Uncertainty in probabilistic risk assessment. In Reliability Engineering and System safety, pp. 127–132

    Article  Google Scholar 

  33. Zadeh, L. A. (1984). Review of books: A mathematical theory of evidence. AI Magazine, 5, 81–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Joe Steinhauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinhauer, H.J., Karlsson, A. (2019). Information Fusion. In: Said, A., Torra, V. (eds) Data Science in Practice. Studies in Big Data, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-97556-6_4

Download citation

Publish with us

Policies and ethics