Skip to main content

Human Cognition-Inspired Robotic Grasping

  • Chapter
  • First Online:
Cognitive Architectures

Abstract

The hand is one of the most complex and fascinating organs of the human body. We can powerfully squeeze objects, but we are also capable of manipulating them with great precision and dexterity. On the other hand, the arm, with its redundant joints, is in charge of reaching the object by determining the hand pose during preshaping. The complex motion and task execution of the upper-limb system may lead us to think that the control requires a very significant brain effort. As a matter of fact, neuroscience studies demonstrate that humans simplify planning and control using a combination of primitives, which the brain modulates to produce hand configurations and force patterns for the purpose of grasping and manipulating different objects. This concept can be transferred to robotic systems, allowing control within a space of lower dimension. The lower number of parameters characterizing the system allows for embodying the control in machine learning frameworks, reproducing a sort of human-like cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapandji, I. A. (1970). The physiology of the joints. Upper limb (Vol. 1, 2nd ed., pp. 146–202). London: E. and S. Livingstone.

    Google Scholar 

  2. Tubiana, R. (1981). Architecture and function of the hand. In R. Tubiana (Ed.), The Hand (Vol. 1, pp. 19–93). Philadelphia, PA: Saunders.

    Google Scholar 

  3. Soechting, J. F., & Flanders, M. (1997). Flexibility and repeatability of finger movements during typing: Analysis of multiple degrees of freedom. Journal of Computing Neuroscience, 4, 29–46.

    Article  Google Scholar 

  4. Lemon, R. N. (1999). Neural control of dexterity: What has been achieved? Experimental Brain Research, 128, 6–12.

    Article  Google Scholar 

  5. Schieber, M. (1990). How might the motor cortex individuate movements? Trends Neuroscience, 13, 440–445.

    Article  Google Scholar 

  6. Schieber, M. (1995). Muscular production of individuated finger movements: The roles of extrinsic finger muscles. Journal of Neuroscience, 15, 284–297.

    Article  Google Scholar 

  7. Napier, J. R. (1956). The prehensile movements of the human hand. Journal Bone and Joint Surgery, 38B, 902–913.

    Google Scholar 

  8. Johannson, R. S., & Cole, K. J. (1992). Sensory-motor coordination during grasping and manipulative actions. Current Opinion in Neurology, 2, 815–823.

    Article  Google Scholar 

  9. Kamakura N., Matsuo M., Ishii H., Mitsuboshi F., & Miura Y. Patterns of static prehension in normal hands. The American Journal of Occupational Therapy, 7, 437–445.

    Google Scholar 

  10. Elliot, J. M., & Connolly, K. J. A. (1984). Classification of manipulative hand movements. Developmental Medicine & Child Neurology, 26, 283–296.

    Google Scholar 

  11. Klatzky, R. L., Pellegrino, J., McCloskey, B., Doherty, S., & Smith, T. (1987). Knowledge about hand shaping and knowledge about objects. Journal of Motor Behavior, 19, 187–213.

    Article  Google Scholar 

  12. Cutkosky, M. R., & Howe, R. D. (1990). Human grasp choice and robotic grasp analysis. In S. T. Venkataraman & T. Iberall (Eds.), Dextrous robot hands (pp. 5–31). New York: Springer.

    Google Scholar 

  13. Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. The Journal of Neuroscience, 18, 10105–10115.

    Article  Google Scholar 

  14. Mason, C. R., Gomez, J. E., & Ebner, T. J. (2001). Hand synergies during reach-to-grasp. Journal of Neurophysiology, 86, 2896–2910.

    Article  Google Scholar 

  15. Ficuciello F., Palli G., Melchiorri C., & Siciliano B. (2013). A model-based strategy for mapping human grasps to robotic hands using synergies. In Proceedings 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

    Google Scholar 

  16. Palli, G., Melchiorri, C., Vassura, G., Berselli, G., Pirozzi, S., Natale, C., De Maria, G., & May, C. (2012). Innovative technologies for the next generation of robotic hands. In B. Siciliano (Ed.), Advanced Bimanual Manipulation. Springer Tracts in Advanced Robotics (Vol. 80, pp. 173–218). Springer.

    Google Scholar 

  17. Grebenstein, M., Chalon, M., Hirzinger, G., & Siegwart, R. (2010). A method for hand kinematics designers 7 billion perfect hands. In Proceedings 1st International Conference on Applied Bionics and Biomechanics (pp. 357–362). Venice, Italy.

    Google Scholar 

  18. Siciliano, B., & Khatib, O. (Eds.). (2008). Springer Handbook of Robotics (2nd ed.). Springer.

    Google Scholar 

  19. Ficuciello, F., Federico, A., Lippiello, V., & Siciliano, B. (2017). Synergies evaluation of the SCHUNK S5FH for grasping control. Springer Proceedings in Advanced Robotics, 4, 225–233.

    Article  Google Scholar 

  20. Schunk hand webpage. http://www.schunk-modular-robotics.com/en/home/products/servo-electric-5-finger-gripping-hand-svh.html.

  21. Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B. (2011). Experimental evaluation of postural synergies during reach to grasp with the UB Hand IV. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1775–1780). San Francisco.

    Google Scholar 

  22. Geng, T., Lee, M., & Hulse, M. (2011). Transferring human grasping synergies to a robot. Mechatronics, 21(1), 272–284.

    Article  Google Scholar 

  23. Sun, S., Rosales, C., & Suarez, R. (2010). Study of coordinated motions of the human hand for robotic applications. In Proceedings IEEE International Conference on Robotics and Automation (pp. 776–781). Anchorage, Alaska.

    Google Scholar 

  24. Gioioso, G., Salvietti, G., Malvezzi, M., & Prattichizzo, P. (2011). Mapping synergies from human to robotic hands with dissimilar kinematics: An object based approach. In IEEE International Conference on Robotics and Automation, Workshop on Manipulation Under Uncertainty. Shangai.

    Google Scholar 

  25. Ficuciello, F., Zaccara, D., & Siciliano, B. (2016). Learning grasps in a synergy-based framework. In Springer Proceedings in Advanced Robotics (Vol. 1, pp. 125–135). Cham.

    Google Scholar 

  26. KUKA Lightweight Robot 4+ webpage. https://www.kukakore.com/wp-content/uploads/2012/07/KUKA_LBR4plus_ENLISCH.pdf.

  27. Xsens-MVN webpage. https://www.xsens.com/products/xsens-mvn.

  28. Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: The dtw package. Journal of statistical Software, 31(7), 1–24.

    Article  Google Scholar 

  29. Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. Springer.

    Google Scholar 

  30. Jacques, J., & Preda, C. (2004). Model-based clustering for multivariate functional data. Computational Statistics & Data Analysis, 71, 92–106.

    Article  MathSciNet  Google Scholar 

  31. Happ, C. (2015). Multivariate functional principal component analysis for data observed on different (dimensional) domains. Journal of the American Statistical Association.

    Google Scholar 

  32. Berrendero, J., Justel, A., & Svarc, M. (2011). Principal components for multivariate functional data. Computational Statistics & Data Analysis, 55(9), 2619–2634.

    Article  MathSciNet  Google Scholar 

  33. Ficuciello, F., Zaccara, D., & Siciliano, B. (2016). Synergy-based policy improvement with path integrals for anthropomorphic hands. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2016) (pp. 1940–1945).

    Google Scholar 

  34. Theodorou, E., Buchli, J., & Schaal, S. (2010). A generalized path integral control approach to reinforcement learning. Journal of Machine Learning Research.

    Google Scholar 

  35. Stulp, F., & Sigaud, O. (2012). Path integral policy improvement with covariance matrix adaptation. In Proceedings of the 29 International Conference on Machine Learning.

    Google Scholar 

  36. Bicchi, A. (1994). On the closure properties of robotic grasping. International Journal of Robotics Research, 14(4), 319–334.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the EC Seventh Framework Programme (FP7) within RoDyMan project 320992 and by the national grant MUSHA under Programma STAR linea 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Monforte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monforte, M., Ficuciello, F., Siciliano, B. (2019). Human Cognition-Inspired Robotic Grasping. In: Aldinhas Ferreira, M., Silva Sequeira, J., Ventura, R. (eds) Cognitive Architectures. Intelligent Systems, Control and Automation: Science and Engineering, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-97550-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97550-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97549-8

  • Online ISBN: 978-3-319-97550-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics