Advertisement

Phase-Sensitive Detection of HT-2 Mycotoxin Using Graphene-Protected Copper Plasmonics

  • Philip A. ThomasEmail author
Chapter
  • 224 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Surface plasmon resonance (SPR) biosensing has been a commercially established sensing technique for over a decade. However, commercial systems, which measure shifts in the position of SPRs in gold thin films, struggle to detect lower concentrations of smaller molecules.

References

  1. 1.
    B. Liedberg, C. Nylander, I. Lundström, Biosensing with surface plasmon resonance—how it all started. Biosens. Bioelectron. 10(8), i–ix (1995)Google Scholar
  2. 2.
    J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54(1), 3–15 (1999)CrossRefGoogle Scholar
  3. 3.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442–453 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620(1), 8–26 (2008)CrossRefGoogle Scholar
  5. 5.
    A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats, Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8(11), 867–871 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    V.G. Kravets, F. Schedin, A.V. Kabashin, A.N. Grigorenko, Sensitivity of collective plasmon modes of gold nanoresonators to local environment. Opt. Lett. 35(7), 956–958 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    B.D. Thackray, V.G. Kravets, F. Schedin, G. Auton, P.A. Thomas, A.N. Grigorenko, Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photonics 1(11), 1116–1126 (2014)CrossRefGoogle Scholar
  8. 8.
    J.H.T. Luong, K.B. Male, J.D. Glennon, Biosensor technology: technology push versus market pull. Biotechnol. Adv. 26(5), 492–500 (2008)CrossRefGoogle Scholar
  9. 9.
    P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep. 4 (2014)Google Scholar
  11. 11.
    A.N. Grigorenko, P.I. Nikitin, A.V. Kabashin, Phase jumps and interferometric surface plasmon resonance imaging. Appl. Phys. Lett. 75(25), 3917–3919 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    A.V. Kabashin, S. Patskovsky, A.N. Grigorenko, Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt. Exp. 17(23), 21191–21204 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, A.N. Grigorenko, Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12(4), 304–309 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    K. Kuca, V. Dohnal, A. Jezkova, D. Jun, Metabolic pathways of T-2 toxin. Curr. Drug Metab. 9(1), 77–82 (2008)CrossRefGoogle Scholar
  15. 15.
    EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 9, 2481 (2011)Google Scholar
  16. 16.
    R. Krska, A. Malachova, F. Berthiller, H.P. Van Egmond, Determination of T-2 and HT-2 toxins in food and feed: an update. World Mycotoxin J. 7(2), 131–142 (2014)CrossRefGoogle Scholar
  17. 17.
    P.S. Steyn, Mycotoxins, general view, chemistry and structure. Toxicol Lett. 82, 843–851 (1995)CrossRefGoogle Scholar
  18. 18.
    N.A. Foroud, F. Eudes, Trichothecenes in cereal grains. Int. J. Mol. Sci. 10(1), 147–173 (2009)CrossRefGoogle Scholar
  19. 19.
    S.A. Watson, C.J. Mirocha, A.W. Hayes, Analysis for trichothecenes in samples from southeast asia associated with “yellow rain”. Fundam. Appl. Toxicol. 4(5), 700–717 (1984)CrossRefGoogle Scholar
  20. 20.
    Y. Rodríguez-Carrasco, M. Fattore, S. Albrizio, H. Berrada, J. Mañes, Occurrence of fusarium mycotoxins and their dietary intake through beer consumption by the european population. Food Chem. 178, 149–155 (2015)CrossRefGoogle Scholar
  21. 21.
    T. Inoue, Y. Nagatomi, A. Uyama, N. Mochizuki, Fate of mycotoxins during beer brewing and fermentation. Biosci. Biotechnol. Biochem. 77(7), 1410–1415 (2013)CrossRefGoogle Scholar
  22. 22.
    European Commission. EU: commission Recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Off. J. Eur. Un. 165(OJ L 91), 12–15 (2013)Google Scholar
  23. 23.
    J.P. Meneely, M. Sulyok, S. Baumgartner, R. Krska, C.T. Elliott, A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food. Talanta 81(1), 630–636 (2010)CrossRefGoogle Scholar
  24. 24.
    H.O. Arola, A. Tullila, H. Kiljunen, K. Campbell, H. Siitari, T.K. Nevanen, Specific noncompetitive immunoassay for HT-2 mycotoxin detection. Anal. Chem. 88(4), 2446–2452 (2016)CrossRefGoogle Scholar
  25. 25.
    L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, P. Barois, C.R. Simovski, V.G. Kravets, A.N. Grigorenko, Topological darkness in self-assembled plasmonic metamaterials. Adv. Mater. 26(2), 324–330 (2014)CrossRefGoogle Scholar
  26. 26.
    T.T.N. Lien, X.V. Nguyen, M. Chikae, Y. Ukita, Y. Takamura, Development of label-free impedimetric hCG-immunosensor using screen-printed electrode. J. Biosens. Bioelectron. 2, 3 (2011)Google Scholar
  27. 27.
    V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Krishnan, V. Mani, D. Wasalathanthri, C.V. Kumar, J.F. Rusling, Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels. Angew. Chem. Int. Ed. 50(5), 1175–1178 (2011)CrossRefGoogle Scholar
  29. 29.
    H.R. Sim, A.W. Wark, H.J. Lee, Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance. Analyst 135(10), 2528–2532 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    M. Riskin, R. Tel-Vered, O. Lioubashevski, I. Willner, Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked au nanoparticles composite. J. Am. Chem. Soc. 131(21), 7368–7378 (2009)CrossRefGoogle Scholar
  31. 31.
    Y. Ben-Amram, R. Tel-Vered, M. Riskin, Z.-G. Wang, I. Willner, Ultrasensitive and selective detection of alkaline-earth metal ions using ion-imprinted Au NPs composites and surface plasmon resonance spectroscopy. Chem. Sci. 3(1), 162–167 (2012)CrossRefGoogle Scholar
  32. 32.
    P.L. Truong, C. Cao, S. Park, M. Kim, S.J. Sim, A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor. Lab Chip 11(15), 2591–2597 (2011)CrossRefGoogle Scholar
  33. 33.
    J.-H. Lee, B.-C. Kim, B.-K. Oh, J.-W. Choi, Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomed. Nanotechnol. Biol. Med. 9(7), 1018–1026 (2013)CrossRefGoogle Scholar
  34. 34.
    D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, 6th edn. (W. H. Freeman, 2013)Google Scholar
  35. 35.
    P. Schuck, H. Zhao, The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing (Humana Press, Totowa, NJ, 2010), pp. 15–54Google Scholar
  36. 36.
    J. Rupert, C. Solar, R. Marín, K.L. James, J. Mañes, Mass spectrometry strategies for mycotoxins analysis in European beers. Food Control 30, 122–128 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of ExeterExeterUK

Personalised recommendations